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ABSTRACT
Searching for a parking spot in metropolitan areas is a great
challenge comparable to the Hunger Games, especially in highly
populated areas such as downtown districts and job centers. On-
street parking is often a cost-effective choice compared to parking
facilities such as garages and parking lots. However, limited space
and complex parking regulation rules make the search process of on-
street parking very difficult. To this end, we propose a data-driven
framework for understanding and predicting the spatiotemporal
availability of on-street parking using the NYC parking tickets open
data, points of interest (POI) data and human mobility data. Four
popular types of spatial analysis units (i.e., point, street, census
tract, and grid) are used to examine the effects of spatial scale in
machine learning predictive models. The results show that random
forest works the best with the highest accuracy scores for the
spatiotemporal availability classification across all four spatial
analysis scales.
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1 INTRODUCTION
Parking is an important element in the transportation system
and plays an important role in people’s travel decisions. Parking
availability information and pricing can influence people’s
departure and arrival time, travel mode choices, and activity
duration. Most on-street parking is free or underpriced compared
to garages and parking lots and therefore it is often over-demanded.
This makes searching for a parking spot in metropolitan areas a
great challenge comparable to the Hunger Games, especially in
highly populated areas such as downtown districts, job centers, etc.
First, the supply and demand of parking spaces is unbalanced with
the increasing number of vehicles but limited parking facilities in
urban areas. Second, the urbanization process is accelerating inmost
metropolitan areas and attracting more job opportunities, human
flows, business and social activities. These popular destinations
together with underpriced parking generates more travel demand
and parking needs. Third, parking availability is highly variable
spatially and temporally.

On-street parking is often a cost-effective choice compared to
parking facilities such as garages and parking lots. However, limited
space and complex parking regulation rulesmake the search process
very difficult. Moreover, there is almost no real time information
about available on-street parking spots. Even if the driver is a local
resident, compound parking rules can still surprise the driver and
generate tickets due to various reasons such as street cleaning
schedules, proximity to a fire hydrant, and no standing or no
stopping rules during certain time periods. New York City (NYC)
is among the most ticketed and the highest ticket cost cities in the
United States1. There are over 10.8 million parking violation tickets
generated in NYC in the fiscal year 2017 and 11.7 million in fiscal
year 2018. The motivation of this research is to first understand
the spatiotemporal patterns of on-street parking violation tickets
and then build reliable machine learning models to predict the
spatiotemporal availability of on-street parking using the NYC
open data2.

To this end, we propose a data-driven framework for
understanding and predicting the spatiotemporal availability of
on-street parking by training machine leaning models using the

1https://www.spotangels.com/blog/nyc-parking-tickets-the-most-ticketed-neighborhoods-in-nyc/
2https://data.cityofnewyork.us/

https://doi.org/10.1145/3347146.3359366
https://doi.org/10.1145/3347146.3359366
https://www.spotangels.com/blog/nyc-parking-tickets-the-most-ticketed-neighborhoods-in-nyc/
https://data.cityofnewyork.us/


SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Mingxiao Li, Song Gao, Yunlei Liang, Joseph Marks, Yuhao Kang, and Moyin Li

NYC parking tickets open data. In addition, four popular types
of spatial analysis units (i.e., point, street, census tract, and grid)
are used to examine the impact of spatial scale in classic machine
learning predictive models.

2 DATA
2.1 Parking Violation Tickets Open Data
As mentioned above, we downloaded over 10.8 million parking
violation tickets generated in NYC in the fiscal year 2017 and 11.7
million in fiscal year 2018 from the NYC Open Data platform. Each
ticket contains information including a summons number, violation
code, street address, ticketing time, vehicle plate, etc.

2.2 Points of Interest
In order to understand what kind of surrounding environments
are associated with more parking violation tickets, such as the
presence of an employment center, retail stores, health care
services, shopping centers, and so on, we collected data for over
137,000 points of interest (POIs) in NYC from the Safegraph
business venue database3. The POIs are first classified based on
the North American Industry Classification System (NAICS) 2-digit
sector codes. To begin, the POIs are classified into 23 categories
based on the NAICS 2-digit sector codes, including Agriculture
Forestry Fishing 11, Mining Oil and Gas Extraction 21, Utilities
22, Construction 23, Manufacturing (31,32,33), Wholesale Trade 42,
Retail Trade 44, Retail Trade 45, Transportation Warehousing (48,49),
Information 51, Finance Insurance 52, Real Estate & Rental Leasing 53,
Professional Scientific Tech 54, Administrative Support and Waste 56,
Educational Services 61, Health Care and Social Assistance 62, Arts &
Entertainment & Recreation 71, Accommodation & Food Services
72, Other Services 81, Public Administration 92. In addition, the
category of Parking Lots and Garages (NAICS Code: 812930) is
treated as a separate POI category since it is directly related to
parking activity. This gives a total of 24 types of POIs at the root
level of categorization as part of model features.

2.3 Human Mobility Patterns
In addition to the static spatial distribution of POIs information, we
also retrieved the fine-resolution visit patterns of all POIs from the
aforementioned SafeGraph database which covers dynamic human
mobility patterns of millions of anonymous smart phone users. For
each POI, the records of aggregated visitor patterns illustrate the
number of unique visitors and the number of total visits to each
venue during the specified time window, which could reflect the
attractiveness of each venue. The mean hourly visits over a week
were recorded as a 168-dimensional vector to show the dynamic
stream of visit patterns. If a visitor stays for multiple hours, a visit
will be shown in each hour during which the visitor stayed.

2.4 Data preprocessing
In this study, as shown in Figure 1, we discretized the study area into
four spatial scales (point level, street level, census tract level, and
1km grid level) and the time into 168 hourly slots (7 days of a week ∗
24 hours of a day) to capture a snapshot of the availability of street

3https://www.safegraph.com

Figure 1: The spatial distribution of parking violation
tickets at four spatial scales and the temporal variation
curves of tickets.

parking. To perform an analysis at the selected spatiotemporal
scale, we first found the coordinates of each tickets by using an
online geocoding service. Then, since we focus on the street parking
availability, the ticket points that were more than 50 meters from
the road were deleted. Finally, we distributed the number of tickets
and corresponding attributes as follows for each spatial unit and
each time slot.

At the point level, the following features were chosen: the
location of pj (x j ,yj ), the time of day th , and the day of week
td . The corresponding number of tickets Num(j,h,d ) was used
as the label data for model training. At the street level, besides
the spatiotemporal characteristics pj , th , and td , the street width
stwid , street length stlen , street type sttype , and whether it is a
two-way street stdir were selected to characterize each street.
In sum, the training features can be represented as follows:
[pj ,th ,td ,stwid ,stlen ,sttype ,stdir ]. As for the census tract level and
1km grid level, the features were more complex. At these levels,
we not only considered their spatiotemporal characteristics pj ,
th , and td , their street attributes with the summation of street
length sum_st_len and street area sum_st_area, but also considered
the dynamic human mobility patterns and the POI distribution in
the corresponding spatial unit. The POI data was aggregated to
each spatial unit and represented as 24 features. In addition, the

https://www.safegraph.com
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number of visits observed in the specified unit sum_visitj , the
number of unique visitors sum_visitor j , the number of visits of
corresponding to the time of day visit(j,h) and the number of visits
of corresponding to the day of week visit(j,d ) were added to model
the human mobility patterns. Thus, the training features can be
represented as follows: [pj , th , td , sum_st_len, sum_st_area, POI1,
···, POI24, sum_visitj , sum_visitor j , visit(j,h), visit(j,d )]. Note that
the records with at least one ticket are marked as ‘1’ for binary
classification. Table 1 shows the number of samples at each spatial
scale and the ratio of positive and negative cases for parking
availability classification.

Table 1: The number of samples at different spatial scales
and the ratio of positive and negative cases for parking
availability classification.

Spatial Unit # of samples % positives % negatives
Point 35,629,944 12.3 87.7
Street 6,716,976 29.7 70.3

Census Tract 356,496 70.5 29.5
1km Grid 139,440 69.2 30.8

3 METHODS
To investigate the impact of the spatial resolution on parking
availability prediction using machine learning, we selected the
following widely used machine learning models for this case study.
It can be interpreted as a binary classification problem of whether
the corresponding time and place can be parked by analyzing
the historical parking violation ticket information. Therefore, a
specified location and time with at least one ticket is marked as ‘1’
to represent ‘Risky Parking’ and the others will be marked as ‘0’ to
represent ‘Permitted Parking’.

KNN: The k-nearest neighbors algorithm (KNN) classifies an
object by a vote of its neighbors, with the object being assigned to
the class most common among its k nearest neighbors in feature
space [4].

Logistic regression: It uses a logistic function to model the
relationship between one dependent binary variable and one or
more nominal, ordinal, interval and ratio independent variables [1].

Naive Bayes: It is a probabilistic classifier that makes
classifications using the Maximum A Posteriori decision rule in a
Bayesian setting [6].

SVM: Support vector machines (SVM) construct a set of
hyperplanes in a high-dimensional space. New samples are mapped
into the same space and predicted based on the gaps which they
fall into [3].

SGD: Stochastic gradient descent (SGD) classifier implements
linear support vector machines with SGD learning: the gradient of
the loss is estimated each sample at a time and the model is updated
along the way with a decreasing strength schedule [8].

Random Forest: The random forest (RF) constructs a multitude of
decision trees and outputs the results by computing the mean of
the predictions of each individual tree [2]. RF is trained on different
parts of the same training set, with the goal of reducing the variance.

DNN: Deep neural network (DNN) is a multi-hidden-layer
artificial neural network whose artificial neurons can respond to a

surrounding unit within a portion of the coverage. We constructed
a DNN architecture consisting of four fully connected layers and
two dropout layers with a 0.5 rate to regularize the DNN and
improve the generalization error. The output layer uses a sigmoid
activation function to produce a probability between 0 and 1 for
binary classification using a threshold of 0.5.

Evaluation: There are four outcomes from the binary
classification result [7]: true positives (TP), false positives (FP), True
negatives (TN), and False negatives (FN). The following metrics
including the overall accuracy, precision and recall, F1-score are
used to evaluate the parking availability classification models.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Accuracy =
TP +TN

TP +TN + FP + FN
(3)

F1 = 2 ∗
Precision ∗ Recall

Precision + Recall
(4)

4 RESULTS
Regarding the classification results, as shown in Table 2, random
forest outperforms all other models and achieved both high
accuracy scores (0.82, 0.85, 0.86, and 0.88) and high F1-scores (0.82,
0.72, 0.90, and 0.88) across all four spatial scales. The KNN and
the DNN also perform well and fall behind the random forest
by a small margin. Note that we chose k=3 as the number of
nearest neighbors in feature space with regard to the temporal
autocorrelation patterns of parking availability over time. The
autocorrelation coefficient for parking availability with temporal
lag of 3 hours is 0.28, 0.40, 0.38, and 0.55 at the point, street, census
tract, and grid levels respectively. Although the Naive Bayes model
get a good accuracy and F1 scores at the point level (0.73 and 0.75)
and at the street level (0.66 and 0.72), it didn’t perform well at the
aggregation levels with lower F1-scores at the census tract level
(0.33) and at the 1km grid level (0.54).

Alternatively, one may want to check the detailed precision-
recall curves with different recall rates as shown in Figure 2 to
compare the model performance especially for skewed datasets [5].
It shows that the random forest outperforms all other models with
the highest precision value across different recall rates in parking
availability prediction at four spatial scales.

5 CONCLUSION
In this study, we propose a data-driven framework for understand-
ing and predicting the spatiotemporal availability of on-street park-
ing by training a set of machine leaning models using the NYC
parking tickets open data. The models are tested at four types of
spatial analysis units (i.e., point, street, census tract, and grid) and
the results confirmed the impact of spatial scale in machine learn-
ing predictive models. The experiment results show that random
forest works the best with the highest F1 scores for the spatiotem-
poral availability classification across all four spatial scales. Given a
search location and time for on-street parking, the F1-score is 0.82
for parking availability prediction, which shows a good potential
for street parking applications. Moreover, using the surrounding



SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Mingxiao Li, Song Gao, Yunlei Liang, Joseph Marks, Yuhao Kang, and Moyin Li

Table 2: Prediction accuracy and F1-score of parking availability using all features with different machine learning models.

Model Accuracy and F1
(Point)

Accuracy and F1
(Street)

Accuracy and F1
(Census Tract)

Accuracy and F1
(Grid)

KNN 0.79 and 0.79 0.73 and 0.73 0.78 and 0.85 0.83 and 0.83
Logistic Regression 0.55 and 0.56 0.58 and 0.57 0.66 and 0.73 0.77 and 0.74

Naive Bayes 0.73 and 0.75 0.66 and 0.72 0.42 and 0.33 0.67 and 0.54
SVM 0.53 and 0.53 0.55 and 0.51 0.71 and 0.83 0.56 and 0.69
SGD 0.57 and 0.60 0.59 and 0.60 0.68 and 0.84 0.76 and 0.75

Random Forest 0.82 and 0.82 0.85 and 0.72 0.86 and 0.90 0.88 and 0.88
DNN 0.74 and 0.76 0.75 and 0.74 0.71 and 0.83 0.76 and 0.74

Figure 2: The precision and recall curves of the parking availability prediction results at different spatial scales.

POI context and dynamic human mobility patterns can help im-
prove the accuracy of parking availability prediction. With better
on-street parking information provided in advance, drivers can
enhance their parking decision-making. Our research may offer in-
sights into parking management policy such as parking regulation
rules, pricing, and time limitation to balance the parking demand
and supply at different spatial scales using open data and machine
learning approaches.
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