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Artificial intelligence studies in cartography: a review and synthesis of methods, 
applications, and ethics
Yuhao Kang a,b, Song Gao a and Robert E. Roth a

aDepartment of Geography, University of Wisconsin-Madison, WI, USA; bGISense Lab, Department of Geography, University of South Carolina, 
Columbia, SC, USA

ABSTRACT
The past decade has witnessed the rapid development of geospatial artificial intelligence 
(GeoAI) primarily due to the ground-breaking achievements in deep learning and machine 
learning. A growing number of scholars from cartography have demonstrated successfully 
that GeoAI can accelerate previously complex cartographic design tasks and even enable 
cartographic creativity in new ways. Despite the promise of GeoAI, researchers and practi-
tioners have growing concerns about the ethical issues of GeoAI for cartography. In this 
paper, we conducted a systematic content analysis and narrative synthesis of research studies 
integrating GeoAI and cartography to summarize current research and development trends 
regarding the usage of GeoAI for cartographic design. Based on this review and synthesis, we 
first identify dimensions of GeoAI methods for cartography such as data sources, data 
formats, map evaluations, and six contemporary GeoAI models, each of which serves 
a variety of cartographic tasks. These models include decision trees, knowledge graph and 
semantic web technologies, deep convolutional neural networks, generative adversarial net-
works, graph neural networks, and reinforcement learning. Further, we summarize seven 
cartographic design applications where GeoAI have been effectively employed: generalization, 
symbolization, typography, map reading, map interpretation, map analysis, and map produc-
tion. We also raise five potential ethical challenges that need to be addressed in the 
integration of GeoAI for cartography: commodification, responsibility, privacy, bias, and 
(together) transparency, explainability, and provenance. We conclude by identifying four 
potential research directions for future cartographic research with GeoAI: GeoAI-enabled 
active cartographic symbolism, human-in-the-loop GeoAI for cartography, GeoAI-based map-
ping-as-a-service, and generative GeoAI for cartography.
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1. Introduction

In recent years, there has been an explosion in the 
advancement of artificial intelligence (AI) technologies, 
which have been employed to address a wide range of 
practical problems (Ertel, 2018; LeCun et al., 2015). 
Many scholars in GIScience are now utilizing AI to 
solve complex geographic problems, ranging from spa-
tial knowledge discovery and reasoning, geographic 
phenomena representation and simulation, and human- 
environment relationship modeling (Chen et al., 2023; 
Gao, 2021; Janowicz et al., 2020; Li, 2020). This emer-
ging research thrust, termed Geospatial Artificial 
Intelligence (GeoAI), is significantly enriching 
GIScience research (Gao, 2021; Janowicz et al., 2020). 
The key difference that sets GeoAI apart from generic 
AI lies in GeoAI’s requirements for geographic knowl-
edge and domain-specific insights. Researchers have 
further incorporated geographical theories or principles 
to guide AI models and have developed spatially-explicit 

GeoAI models (Kang et al., 2022; W. Li et al., 2021). 
Amid this backdrop, a growing number of cartography 
scholars have demonstrated successfully that GeoAI can 
accelerate previously complex cartographic design tasks 
and even enable cartographic creativity in new ways 
(Feng et al., 2019; Kang et al., 2019; Touya et al., 2019; 
Usery et al., 2021). Accordingly, the integration of 
GeoAI for cartography is now being recognized as 
a promising research frontier at the intersection of car-
tography and GIScience.

Integrating (geospatial) AI in cartography is not com-
pletely new. Its roots date at least to the early 1980s when 
the use of AI was employed for vectorization (Loodts,  
1981). Researchers in the 1980s into the 1990s built 
a series of expert systems – the most popular AI approach 
at that time – for map design and map generalization 
(Forrest, 1991; V. B. Robinson et al., 1986), point-feature 
label placement (Christensen et al., 1995), cartographic 
knowledge representation (Su, 1996), and map content 
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reference (Steinhauer et al., 2001). Two other mainstream 
AI models emerged in the 1990s that have been leveraged 
widely for map design evaluation and generalization 
including: decision tree-based machine learning 
approaches (Plazanet et al., 1998; Steinhauer et al., 2001; 
Taillandier & Gaffuri, 2012; Whigham et al., 1992) and 
artificial neural networks (ANNs) (Allouche & Moulin,  
2005; García Balboa & Ariza López, 2008; Lagrange et al.,  
2000; Muller, 1992; Werschlein & Weibel, 1994). Other AI 
approaches developed for cartographic generalization 
include genetic algorithms (Armstrong, 1991; Weibel 
et al., 1995), case-based reasoning (Keller, 1994), the multi- 
agent system (Ruas & Duchêne, 2007), and the ant colony 
algorithm (Zheng et al., 2011). The latest boom of GeoAI 
for cartography is primarily motivated by the advancement 
of deep learning and machine learning approaches in com-
puter science. For instance, the deep convolutional neural 
network (DCNN)-based approach has achieved significant 
improvements in image object detection tasks (Krizhevsky 
et al., 2017). In addition, AlphaGo, an intelligent system 
that uses advanced deep learning and reinforcement learn-
ing (Silver et al., 2016), beat the human world champion of 
the Go game, one of the most complex board games.

Deep learning and machine learning have two marked 
advantages for cartography. First, GeoAI techniques 
including deep learning and machine learning algorithms 
can achieve better performance in solving several complex 
cartographic tasks compared to classic statistical and com-
putational approaches. For instance, GeoAI-based 
approaches performed better in the geographic object 
(e.g., buildings, road networks, map contents) identifica-
tion in maps (e.g., Jiao et al., 2022b; Touya et al., 2020; Uhl 
et al., 2020), a topic often treated as part of data assembly 
and generalization within cartography. Second, GeoAI can 
assist cartographers in new cartographic processes that 
existing GIS tools are unable to tackle, enabling cartogra-
phers to enhance their creativity during design. For exam-
ple, cartography is often considered both art and science, 
with the artistic dimension encapsulating the cartogra-
phers’ creativity, ingenuity, positionality, and experience 
(Kraak et al., 2020). Recent breakthroughs in AI have 
achieved great success in modeling aspects of visual art-
work including style and aesthetics (e.g., Demir et al., 2021; 
Jing et al., 2020; Santos et al., 2021), which then can be 
transferred as inspiration into map designs (Kang et al.,  
2019) or serve as the basis of map generalization (Feng 
et al., 2019; Touya et al., 2019; Usery et al., 2021).

Despite the current success of GeoAI for cartogra-
phy, researchers and practitioners have growing con-
cerns about the ethical issues of GeoAI for cartography 
(Griffin, 2020; Zhao et al., 2021). Here, we use ethics to 
describe the rules of conduct regarding acceptable and 
unacceptable behavior within a particular social system 

(Siau & Wang, 2020), which in this case would help to 
diagnose and prevent misuse of GeoAI for cartography. 
Ethical concerns about GeoAI for cartography can be 
drawn from two primary arenas: logical extensions to 
the existing Codes of Ethics governing cartography and 
GIScience (British Cartographic Society, 2020; Field,  
2022; GIS Certification Institute, 2022; Nelson et al.,  
2022), and the ethical concerns about GeoAI raised 
from researchers outside of cartography and GIScience 
(Bostrom & Yudkowsky, 2018; Jobin et al., 2019). 
Despite these critiques, actionable and time-tested ethi-
cal guidelines for GeoAI are limited in the literature.

Here, we provide a systematic content analysis and 
narrative synthesis of research studies integrating GeoAI 
and cartography to summarize current research and 
development trends regarding the usage of GeoAI for 
cartographic design. From this review and synthesis, we 
first discuss dimensions of GeoAI methods for cartogra-
phy, including data sources, data formats, map evalua-
tions, and, notably, six contemporary GeoAI models that 
have been employed for specific cartographic tasks: deci-
sion trees, knowledge graph and semantic web technolo-
gies, deep convolutional neural networks, generative 
adversarial networks, graph neural networks, and rein-
forcement learning. We then summarize seven carto-
graphic design applications that have adopted GeoAI to- 
date: generalization, symbolization, typography, map 
reading, map interpretation, map analysis, and map pro-
duction. We also raise five of potentially numerous ethi-
cal challenges that require consideration when 
integrating GeoAI and cartography: commodification, 
responsibility, privacy, bias, and (together) transparency, 
explainability, and provenance. This paper concludes 
with the identification of four potential research topics 
for future cartographic research with GeoAI: GeoAI- 
enabled active cartographic symbolism, human-in-the- 
loop GeoAI for cartography, GeoAI-based mapping-as 
-a-service, and generative GeoAI for cartography.

2. Literature selection

We performed a content analysis and narrative synthesis of 
research studies integrating GeoAI and cartography follow-
ing the guidelines and suggestions by prior literature review 
studies (Snyder, 2019; Tang & Painho, 2021; Tranfield 
et al., 2003). We first selected the corpus of articles by 
defining a search query in Scopus (Figure 1). Scopus1 is 
a comprehensive scientific database that covers a wide 
range of disciplines, including cartography, geography, 
and computer science. Scopus provides access to a large 
number of journals, including several prestigious cartogra-
phy and GIScience journals (e.g., Cartography and 
Geographic Information Science and International Journal 
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of Geographical Information Science). Moreover, Scopus 
offers advanced search features that allow users to refine 
the search query onto specific keywords, titles, authors, and 
journal names, which helped to ensure that we captured 
relevant articles.

Our search query comprises both GeoAI methods 
and common cartographic design tasks:

SQ = ((“geoai” OR “artificial intelligence” OR “machine 
learning” OR “deep learning” OR “neural network” OR 
“knowledge graph” OR “generative adversarial” OR 
“reinforcement learning” OR “symbolic AI”) AND 
(“cartography” OR “cartographic” OR “historical 
map” OR “map style” OR “map design” OR “map gen-
eralization” OR “map label” OR “map content” OR 
“participatory mapping” OR “counter mapping”))

The initial search query resulted in 543 candidate research 
articles from Scopus. We performed two rounds of rele-
vancy screening, first on abstract and then on full-text, to 
remove papers unrelated to the scope of our review. This 
two-round screening resulted in 78 candidate research 
articles from Scopus. After relevancy screening, we then 
conducted a backward search based on the manuscript 
reference lists from the candidate Scopus articles to include 
relevant studies not returned from the Scopus database. 
Backward search is a widely used approach in review 
papers (e.g., Harborth, 2017; Tang & Painho, 2021), and 
helped to ensure that our review provides a more compre-
hensive landscape of GeoAI for cartography research 
beyond what is found in Scopus. Notably, the backward 
search added several useful papers published in 

cartographic conference proceedings such as the 
International Cartography Conference (ICC) and 
AutoCarto. In total, we identified a final corpus of 101 
papers for inclusion in our review and synthesis. These 
papers were all written in English and were published by 
31 December 2022. A list of all considered articles in the 
final corpus is available as supplemental material to facil-
itate the transparency and reproducibility of our study.

Notably, the focus of our review is GeoAI for cartogra-
phy rather than GeoAI for maps or GeoAI for spatial data. 
We excluded studies without a focus on cartographic 
design principles given our objective of understanding if 
and how GeoAI can support the cartographic design work-
flow. For example, we excluded studies that primarily 
utilized GeoAI to address bias and data quality issues in 
OSM data without explicitly mapping this data. Similarly, 
we excluded studies that focused on GeoAI for feature 
extraction from remotely sensed imagery, given their per-
ipheral relevance to cartographic design decisions. 
By adopting this approach, our study provides 
a comprehensive understanding of the potential role of 
GeoAI in support of various cartographic design decisions.

3. Literature content analysis

We analyzed the content of the sampled literature in the 
aggregate using several bibliometric techniques. First, we 
created a network map (Figure 2) of common terms from 
the sampled literature using VOSviewer (van Eck & 

Figure 1. The article selection process for the literature review and synthesis.
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Waltman, 2009), a tool used in prior content analysis 
studies (e.g., Wu et al., 2022). The network map visualizes 
the word occurrences in the article titles and abstracts to 
highlight connections and visually reveal structures among 
concepts. We set the minimum number of word occur-
rences to six to emphasize the more common relationships 
and avoid an overwhelming number of subtopics. The 
most common term neural network appears in the center 
of the network map, indicating that it is the fundamental 
technical component of deep learning. Other notable con-
nection points that are relevant to GeoAI techniques 
include graph convolutional network and generative adver-
sarial network.

We then identified five topic clusters using a smart 
local moving algorithm in VOSviewer (Van Eck & 
Waltman, 2014; Waltman & van Eck, 2013), color cod-
ing them within the network map. The smart local 
moving algorithm is an optimization function designed 
for community detection (i.e., clustering) in large and 
complex networks (see Waltman & van Eck, 2013 for 
technical details). We adapted the smart local moving 
algorithm to identify semantic clusters based on the 
titles, abstracts, and keywords of the included papers.

The red cluster, combined with several nodes in the 
blue cluster, reflects articles on map generalization, the 

most common cartographic design task supported by 
GeoAI from the sampled literature, such as selection, 
aggregation, and group pattern. The blue cluster contains 
terms that are relevant to cartographic knowledge. The 
green cluster includes terms such as historical map, road 
extraction, and map image, suggests the use of GeoAI 
such as DCNNs to identify objects from pixel and image- 
based raster maps. The yellow cluster refers to using 
generative adversarial networks for map style transfer. 
The purple cluster indicates the use of graph convolu-
tional networks to represent road networks as a graph.

We drew from the network analysis to establish 
a working framework of research topics facing GeoAI 
for cartography as a way to organize and synthesize the 
sampled literature (Figure 3). Our framework separates 
GeoAI data sources, data formats, methods, and evalua-
tions at the top, then applications to cartographic design 
decisions in the middle, and ethical issues and future 
directions at the bottom. The GeoAI section of the frame-
work includes six major GeoAI models employed in the 
sampled literature (details in Section 4). The cartography 
section is organized into seven categories and ten topics 
derived from the Cartography and Visualization section 
of GIS&T Body of Knowledge (2022), a comprehensive 
online resource that provides a foundational framework 

Figure 2. Network cluster map of the word occurrences found in the titles and abstracts of the papers selected for review.
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for cartography and GIScience. The GIS&T Body of 
Knowledge is written and peer-reviewed by scholars in 
the cartography and GIScience communities and has 
been widely used as a reference and textbook for educa-
tors, students, and professionals. We only discuss the 
cartographic design decisions observed in the sampled 
literature, so arguably this section of the framework could 
be extended to all Cartography and Visualization topics 
in the GIS&T Body of Knowledge as applications of 
GeoAI for cartography expand.

We then analyzed papers published in different years, 
subtopics, and venues. Figure 4 illustrates the recent rise 
in the integration of GeoAI for cartography. Interest in 
GeoAI for cartography has grown substantially, starting 

from only two sampled articles in 2017 to 34 papers in 
2022. There is a minor decline in published work in 2021, 
potentially related to the impact of the COVID-19 pan-
demic on research productivity in 2020−2021. Overall, 
there appears to be a growing level of awareness and 
interest in GeoAI for cartography.

We also analyzed the number of papers published on 
different cartographic design decisions derived from the 
Cartography and Visualization section of GIS&T Body of 
Knowledge (2022). As shown in Figure 5, the number of 
papers on each cartographic topic is unbalanced, with 
about a third of the sampled studies focusing on map 
generalization (29 papers). The second more frequent 
topic is map object detection (24 papers), with no other 

Figure 3. A conceptual framework of GeoAI in cartography.
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topic having over 10 papers. This summary by topic both 
shows where innovation currently exists regarding GeoAI 
for cartography, but also where future work could infill 
gaps in leveraging GeoAI in cartography. Notably, there 
are three review papers in the sample that have 
a narrower scope than our review and synthesis presented 
here. Two of these review papers focus on a specific 
cartographic design decisions such as geographic feature 

recognition (or map object detection) (Chiang et al.,  
2020) and road network extraction (Jiao et al., 2021). 
The third review paper summarizes several practical 
applications of GeoAI for topographic mapping in the 
United States Geological Survey (Usery et al., 2021).

We also analyzed the publication outlets of sampled 
literature. Of the final set of 101 papers, 71 (70%) were 
published in peer-reviewed journals and 28 (28%) in 
conference proceedings. Figure 6 shows the journals that 
published at least two papers from the set of reviewed 
papers. Among all journals, the ISPRS International 
Journal of Geo-Information published the most papers 
(ten) on GeoAI for cartography. It is closely followed by 
International Journal of Geographical Information Science 
(nine), and Cartography and Geographic Information 
Science (eight). Other cartography and GIScience journals 
including Transactions in GIS, IEEE Access, International 
Journal of Cartography, and Journal of Geovisualization 
and Spatial Analysis also published over three papers. In 
addition to these peer-reviewed journals, we expanded 
our research to include relevant conferences in the field. 
These primary conferences include but are not limited to 
AutoCarto, the ICC (International Cartographic 
Conference), and ACM SIGSPATIAL. Also, seven confer-
ence papers were published in The International Archives 
of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences. This summary gives researchers 
and professionals a sense of where to stay up-to-date on 
the latest developments on GeoAI for cartography, and 
also which publication outlets may be most amendable to 
publishing future work.

Finally, we analyzed co-authorship networks to under-
stand the geographic distribution of researchers working 

Figure 5. The number of publications of the selected studies by 
topic.

Figure 6. Journals and conference proceedings that published at 
least two papers from the final set for review. [J] indicates 
journals and [C] indicates conference proceedings. * The 
International Archives of the Photogrammetry, Remote Sensing 
and Spatial Information Sciences. ** International Journal of 
Applied Earth Observation and Geoinformation.

Figure 4. The total number of publications for the selected 
studies during the years of 2017–2022.
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on GeoAI for cartography. According to VOSviewer, 15 
groups of researchers from seven countries (China, France, 
Germany, Poland, Sweden, Switzerland, and the United 
States) have published at least two papers on GeoAI for 
cartography. We summarize their majority affiliates, key 
themes, and one representative publication in Table 1. The 
authorship network summary is valuable for the future 
connecting the international community of researchers, 
professionals, and policymakers working on GeoAI for 
cartography.

4. Literature synthesis: data sources, models, 
and evaluations

4.1. Data sources

Large-scale, high-quality data is the prerequisite to 
training a GeoAI model. In this section, we characterize 
three types of data sources: authoritative datasets, com-
mercial datasets, and user-generated datasets.

Authoritative datasets are maintained and released by 
governments, such as the U.S. Census Bureau and similar 
mapping agencies around the world. Such datasets are 
considered high in data quality and commonly are 
employed for cartographic design. However, the geo-
graphic coverage of authoritative datasets often is restricted 
to specific governmental regions and scales, which limit 
cartographic design for cross-border projects. 
Furthermore, accessing authoritative datasets may be man-
aged by different mapping agencies within a single govern-
mental unit, limiting the harmony of authoritative datasets 
across agencies. Notably, several governmental mapping 
agencies provide historical archives that allow cartogra-
phers to analyze and extract geographic information from 
historical maps. Such historic archives may be relevant for 
training GeoAI models. However, historical archives often 
are limited in access and restricted to specific map types 
and regions. For instance, historical archives typically con-
centrate on specific categories like topographic maps that 

provide rich information on physical and human-made 
features but may lack thematic data (e.g., maps depicting 
historic climates or population distributions).

In contrast, commercial datasets are provided by 
large technology companies such as Google Maps and 
Bing Maps. These mapping companies offer relatively 
high-quality datasets, making them valuable resources 
for cartographic design. However, these mapping com-
panies may charge users to access the data or have 
variable restrictions depending on different terms of 
usage for their services. There are also potential copy-
right issues when using commercial datasets for GeoAI, 
which relates to ethical discussions regarding commo-
dification (See Section 6.1). Researchers and profes-
sionals need to carefully evaluate the copyright and 
licensing policies related to these commercial datasets 
to ensure their ethical usage for GeoAI and cartography.

Finally, user-generated datasets refer to spatial data that 
is generated by users actively (regarding volunteered data) 
or unconsciously (regarding contributed data) (Harvey,  
2013). OpenStreetMap (OSM) is one of the most repre-
sentative open-sourced and user-generated mapping ser-
vices that allows users to contribute geospatial data around 
the globe. In addition, researchers also have suggested 
using search engines and social media to collect maps for 
specific regions (Evans et al., 2017; Hu et al., 2021; 
Robinson, 2019; Schnürer et al., 2021). User-generated 
datasets encourage community participation and therefore 
can offer valuable insights into localized geographic knowl-
edge. Furthermore, such datasets often serve as 
a decentralized sources of map knowledge, which could 
promote more inclusive and participatory research and 
practice in cartography. However, user-generated datasets 
also come with limitations when used in GeoAI for carto-
graphy. One challenge is the quality and reliability of the 
dataset, as contributions from multiple users may lead to 
inaccuracies, incomplete information, and biases. For 
instance, these datasets often lack standardized data struc-
tures and formats, and they also may exhibit spatial and 

Table 1. Research teams that were working on the integration of GeoAI for cartography studies.
Country Affiliates Key themes Representative Publication

China Central South University Data preparation Chen et al. (2021)
Information Engineering University Map generalization Du, Wu, Yin, et al. (2022)
Wuhan University and China University of Geosciences Map generalization Yan et al. (2019)
Wuhan University Map type classification, data preparation Hu et al. (2021)

France IGN Map generalization Touya et al. (2019)
Germany Leibniz University Hannover Map generalization Feng et al. (2019)
Poland University of Warsaw Map generalization Karsznia and Weibel (2018)
Switzerland ETH Zurich Map style transfer, map object detection Jenny et al. (2021)
Sweden Lund University Cartographic knowledge representation Huang and Harrie (2020)
United States University of Colorado, Boulder and University of Minnesota Map object detection Uhl et al. (2020)

University of Washington Ethics Zhao et al. (2021)
University of Wisconsin-Madison Map style transfer Kang et al. (2019)
U.S. Geological Survey GeoAI for cartography Usery et al. (2021)
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temporal biases as they may overlook specific demo-
graphics and less digitally connected populations. 
Therefore, it is necessary to perform quality control mea-
sures to verify the accuracy of the user-generated dataset. 
A second challenge relates to privacy, particularly for data 
collected unconsciously, as discussed in 6.3.

Table 2 summarizes the openly-available datasets 
that have been used to train GeoAI models discussed 
in our sampled literature. GeoAI models are only as 
useful as the datasets used to train them, and therefore 
understanding differences in available datasets is impor-
tant for leveraging GeoAI for cartography.

4.2. Data formats and GeoAI models

Vector and raster are the two primary data formats used 
for storing and representing geospatial data for carto-
graphy (Peter & Weibel, 1999) and also are the two 
primary input data formats for GeoAI models 
(Janowicz et al., 2020). Vector map data treat each geo-
graphic element as a distinct object comprising points, 
polylines, or polygons. These objects contain both 

geometry and attributes, and can be manipulated using 
a variety of spatial operations. Raster map data, in con-
trast, are stored as images, with each pixel correspond-
ing to a spatial area with the digital number associated 
with the pixel storing geographic information about that 
area.

Among all the reviewed papers, we identified six 
categories of GeoAI models that have been widely used 
in the current cartographic studies: decision trees (DT), 
knowledge graph and semantic web technologies (KG & 
SWT), deep convolutional neural networks (DCNNs), 
generative adversarial networks (GANs), graph neural 
networks (GCNs), and reinforcement learning (RL). It is 
important for researchers and professionals to consider 
the unique characteristics of each model, particularly 
those that make them more or less appropriate to vector 
vs. raster input and output map data formats during 
cartographic design.

A Decision Tree (DT) is a tree-like model in which 
each node denotes an attribute, each branch represents 
a choice, and each leaf indicates a class label. Several 
notable decision tree-based machine learning 

Table 2. Data sources that have been utilized to train GeoAI models for cartography.
Data source 
type Dataset name Data source Country

Example 
publication Website

Authoritative Historical Topographic 
Map Collection

U.S. Geological Survey United 
States

Uhl et al. 
(2022)

https://www.usgs.gov/programs/national- 
geospatial-program/historical-topographic- 

maps-preserving-past
National Transportation 

Dataset
U.S. Geological Survey United 

States
Uhl et al. 

(2022)
https://data.usgs.gov/datacatalog/data/USGS: 

ad3d631d-f51f-4b6a-91a3-e617d6a58b4e
Geoportal French national map agency 

(IGN)
French Christophe 

et al. (2022)
https://www.geoportail.gouv.fr/

Lantmäteriet maps 
Sweden

Swedish Mapping, Cadastral and 
Land Registration Authority

Sweden Ståhl and 
Weimann 
(2022)

https://www.lantmateriet.se/sv/geodata/

TOPNL The Netherlands’ Cadastre, Land 
Registry and Mapping Agency

Netherland Kang et al. 
(2021)

https://www.pdok.nl/introductie/-/article/basis 
registratie-topografie-brt-topnl

Database of General 
Geographic Objects 
(BDOO)

Head Office of Geodesy and 
Cartography

Poland Lisiewicz and 
Karsznia 
(2021)

https://www.geoportal.gov.pl/en/dane/baza- 
danych-ogolnogeograficznych-bdo

WWII Topographic 
Maps

Digital Archive @ McMaster 
University Library

World Ekim et al. 
(2021)

http://digitalarchive.mcmaster.ca/islandora/ 
object/macrepo%3A32223

EuroGlobalMap Europe’s National Mapping, 
Cadastral and Land Registration 

Authorities

Europe Lisiewicz and 
Karsznia 
(2021)

https://eurogeographics.org/

Topographic Atlas of 
Switzerland 
(Siegfried map)

the Swiss national mapping 
agency

Switzerland Wu et al. 
(2022)

https://www.swisstopo.admin.ch/en/geodata/ 
maps/historical.html

INSPIRE Directive Infrastructure for Spatial 
Information in Europe

Europe Yang et al. 
(2020)

https://inspire.ec.europa.eu/Themes/Data- 
Specifications/2892

GB1900 National Library of Scotland British Li et al. (2021) https://geo.nls.uk/maps/gb1900/
Commercial Google Maps Google World Kang et al. 

(2019)
https://www.google.com/maps

User-generated OpenStreetMap – World Y. Xu et al. 
(2019)

https://www.openstreetmap.org/

Map History/History of 
Cartography

– World Schnürer et al. 
(2021)

https://www.maphistory.info/

Search engine – World Evans et al. 
(2017)

–

Social Media Platform 
(e.g., Pinterest, 
Twitter)

– World Schnürer et al. 
(2021)

–
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approaches include random forests (Breiman, 2001), 
Gradient boosting machines (Friedman, 2001), 
AdaBoost (Hastie et al., 2009), and XGBoost (T. Chen 
& Guestrin, 2016). Decision trees are appropriate for 
classifying input data based on a set of input attributes, 
making them well-suited for processing vector map 
formats wherein each geographic object is represented 
as an individual entity with several attributes. For 
instance, researchers have utilized decision trees for 
settlement selection (Lisiewicz & Karsznia, 2021) by 
determining which settlements should be included or 
excluded based on various variables including popula-
tion, types of settlements, and functions. Researchers 
have leveraged decision trees for other cartographic 
design decisions as well, including map generalization 
(Lisiewicz & Karsznia, 2021) and color quality evalua-
tion (Chen et al., 2021). More importantly, several 
advanced decision tree models explicitly have been 
employed for cartography, including random forests 
(He et al., 2018) and AdaBoost (Chen et al., 2021). 
These models, which combine multiple decision trees, 
tend to yield better performance in solving cartographic 
design tasks. One key strength of decision trees lies in 
their interpretability, as researchers can identify what 
variables contribute to cartographic design outcome. 
However, decision tree models may require manual 
parameter tuning and may exhibit overfitting issues. 
Also, decision tree models primarily rely on attributes 
to produce results while spatial characteristics are over-
looked. In the future, given the rising concerns regard-
ing transparency and interpretability of the GeoAI for 
cartography, decision tree models may offer valuable 
insights in supporting cartographic design decisions.

Knowledge Graph and Semantic Web Techniques (KG 
& SWT) have been utilized to summarize cartographic 
knowledge. Researchers have employed these techni-
ques to build ontologies and semantic design rules, 
such as demonstrating the relationships among 
a variety of visual variables in maps and geovisualiza-
tions. It is possible to further support logistic reasoning 
such as question answering (Huang & Harrie, 2020; Mai 
et al., 2022) and map feature linking (Shbita et al., 2020) 
via KG & SWT. For instance, Huang and Harrie (2020) 
first constructed an ontology structure to encompass 
map elements such as style, symbol, and legend. They 
subsequently developed a system based on this ontol-
ogy, empowering users to retrieve geographic informa-
tion such as spatial relationships from the system. One 
primary advantage of KG & SWT is their capacity for 
reasoning, which provides a structured and semantic- 
based method to extract spatial knowledge from geo-
graphic data. Using KG & SWT, cartographers could 
delve deeper into the insights offered by maps and 

visualizations. However, a potential limitation of KG & 
SWT refers to the requirement for predefined ontologi-
cal structures. Given the subjectivity inherent in several 
cartographic design decisions, it is intractable to define 
objective structures that represent all cartographic 
design decision processes. In the future, KG & SWT 
may play an increasingly important role in evaluating 
GeoAI for cartography. In particular, KG & SWT, with 
their inherent logistics and reason-based approaches, 
may minimize potential risks for GeoAI to generate 
unethical results such as fake maps and other potential 
negative outputs.

Deep Convolutional Neural Networks (DCNNs) are 
used widely to analyze images, and have achieved high 
performance in multiple computer vision applications 
such as image classification, image object detection and 
localization, and image segmentation (Aloysius & 
Geetha, 2017). Given their inherent adeptness at image 
processing, they are particularly appropriate for raster- 
based map processing. DCNNs are developed based on 
artificial neural networks (ANNs) with multiple layers. 
DCNNs contain filters or kernels that act like a sliding 
window to learn high-level visual features from neigh-
boring cells of the input images. Researchers have 
adapted DCNNs to solve cartographic applications 
such as map type classification (Yang et al., 2020), map 
feature detection (Chiang et al., 2020), and map general-
ization (Feng et al., 2019). For instance, Feng et al. 
(2019) trained an end-to-end DCNN model to produce 
generalized maps of building footprints. Provided with 
datasets of original and manually generalized maps, 
DCNNs can learn the generalization patterns between 
datasets and then apply the generalization solutions to 
new, ungeneralized maps. The major strength of 
DCNNs is their ability to extract complex visual and 
spatial features from map images. Also, DCNNs achieve 
higher performance in most image processing tasks than 
alternative GeoAI models. Nevertheless, DCNNs are not 
without their limitations. In general, building DCNNs 
requires a large amount of labeled training dataset and 
extensive computational resources (e.g., high- 
performance computing and numerous GPUs). They 
also are inherently “black-box” models, making it diffi-
cult to interpret and reproduce the modeling process, 
potentially raising ethical and transparency considera-
tions. Looking toward the future, more advanced 
DCNNs (e.g., vision transformers) could be developed 
to offer deeper understanding of maps with superior 
performance.

Graph Convolutional Networks (GCNs) are 
a generalized version of DCNNs that are appropriate 
for modeling irregularly structured data. Vector data 
can be represented as graphs that contain nodes and 
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edges. For points and polygons, graphs can be con-
structed based on the spatial adjacency relationships of 
the geographic objects and their neighbors. Polylines 
such as road and river networks effectively are graphs 
and therefore work well with GCNs. GCNs have been 
used for modeling vector-format data based on their 
constructed graph structures. GCNs can learn high- 
level features and spatial relationships of geographic 
objects by considering the centering nodes and their 
neighbors. Cartographers have leveraged GCNs to 
learn the representations of geographic objects (Yan 
et al., 2021; Yang, Jiang, et al., 2022) and perform map 
generalizations (Yan et al., 2019). For instance, in the 
study by Yan et al. (2019), a graph was first con-
structed to represent the spatial adjacency relation-
ships among buildings. Then, each building was 
treated as a node, encoded with multiple attributes, 
and input into the GCNs to determine the building 
group patterns. One major advantage of GCNs lies in 
their capacity for modeling irregular vector data, offer-
ing an improvement over DCNNs that primarily are 
designed for grid-like data structures. In the future, 
GCNs may play a key role in embedding cartographic 
principles and spatial patterns into GeoAI models.

Generative Adversarial Networks (GANs) are another 
popular approach in the cartography community. 
GANs contain two components – the generator and 
a discriminator – each of which works as a DCNN. 
Often, the generator creates synthetic data and the dis-
criminator then is used to judge whether the outputs 
created by the generator exhibit similar patterns as the 
input data. The two components are trained together 
until the discriminator cannot differentiate the real 
input map images from the generated synthetic data, 
resulting in plausible generated maps. Existing carto-
graphic studies that use GANs are primarily built based 
on DCNNs. Thus, GANs are also appropriate for raster 
map processing. Given its promise of producing plau-
sible map designs, cartographers have utilized GANs for 
automating raster map processing tasks like map gen-
eralization (Feng et al., 2019) as well as the transfer of 
artwork styles and aesthetics to map tilesets (Christophe 
et al., 2022; Kang et al., 2019). For instance, Kang et al. 
(2019) trained a GAN model that learned map styles 
from target styled maps (e.g., Google Maps) and subse-
quently transferred to simple styled maps (e.g., unstyled 
OSM data). The GAN iteratively generated styled maps 
until the discriminator could not differentiate between 
the target styled maps and transferred styled maps. 
A key strength of GANs refers to their capability to 
generate new map designs that do not currently exist, 
thereby encouraging cartographic creativity. However, 
given that GANs may create unrealistic artifacts, and, in 

the worst case, result in “deep fake geography” (Zhao 
et al., 2021). Also, GANs often require even more com-
plex training and parameter tuning than DCNNs. In the 
future, GANs might be utilized to generate artistic fea-
tures of maps, which may serve as inspiration during 
cartographic design.

Finally, Reinforcement Learning (RL) approaches gen-
erate optimal map solutions by rewarding positive actions 
while penalizing undesirable ones. Duan et al. (2020) 
aligned vector objects to the corresponding map features 
in rasterized historical maps using reinforcement learn-
ing. Despite the rapid development of reinforcement 
learning outside of the GIScience community, the Duan 
et al. (2020) study is the only example of reinforcement 
learning approaches for cartography in our sampled lit-
erature. The primary strength of RL lies in its capability to 
learn and optimize sequences of actions, which makes RL 
particularly suitable for addressing complex cartographic 
designs that involve a series of interdependent decisions. 
However, because RL requires well-defined reward func-
tions and actions, it is challenging to assign the rewards 
and penalties, particularly given the multifaceted and 
subjective nature of cartographic design. Moreover, RL 
models are computationally expensive and require a large 
amount of training data. These constraints might restrict 
the broad applicability of RL within the field of cartogra-
phy. However, there remains potential for its use in 
complex and multi-action decision making processes. 
An example could be multiscale map generalization that 
involves a range of generalization operators (e.g., Roth 
et al., 2011) versus concentrating solely on selection or 
simplification tasks.

Table 3 summarizes the relative pros and cons of the 
reviewed data formats and GeoAI models. Figure 7 
shows the number of papers that employed each 
GeoAI model. DCNNs are among the most popular 
GeoAI models (49 papers), followed by GANs (16). 
Thus, the interrelated DCNNs and GANs have been 
explored for cartographic applications in over 60 papers 
since 2017, indicating that deep learning is a growing 
area of interest in cartography. The remaining GeoAI 
models are relatively underexplored, and therefore 
might indicate an untapped opportunity for future 
research on GeoAI for cartography.

4.3. Evaluation

GeoAI also can evaluate the output map designs from 
a deployed model. GeoAI for evaluation serves much 
like a machine-based map design critique, which may 
present new possibilities for improving the quality and 
efficacy of cartographic design, particularly for complex 
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projects with numerous map sheets or multiscale design 
across multiple zoom levels.

We observed in the sampled articles two primary 
ways to use GeoAI for cartographic evaluation. First, 
researchers have defined a set of machine learning 
metrics to evaluate the performance of different GeoAI 
models. Metrics may be adopted from computer 
science, such as Recall, Precision, and MAE (mean 
absolute error) (Feng et al., 2019; Yang, Jiang, et al.,  
2022), or consider new cartographic design constraints 
such as smoothness, coalescence reduction (Courtial 
et al., 2022a), position error, and size change (Yang, 
Yuan, et al., 2022). Wu et al. (2022) further modeled 
the uncertainties of image segmentation models in 

historical maps. In addition to calculating these metrics, 
researchers also have developed GeoAI models for eval-
uating the visual cartographic output (Kang et al., 2019; 
Yang, Yuan, et al., 2022). These quantitative machine- 
based metrics allow cartographers to evaluate the large- 
scale cartographic outputs produced by GeoAI models, 
particularly when applied across a global tileset at multi-
ple scales. Nonetheless, these metrics have several lim-
itations. First, given the subjectivity and complexity of 
many cartographic design decisions, it becomes challen-
ging to encode them accurately using these metrics. As 
a result, these metrics may only provide a shallow eva-
luation of the output without in-depth insights into 
specific cartographic design decisions. Second, even 
though these metrics can be easily computed by 
machines, it might be hard for users to interpret these 
metrics and make meaningful cartographic design 
adjustments based on the metrics. Users may find it 
challenging to understand the significance of minor 
changes in these metrics, as they may not align with 
their prior experience and preferences for cartographic 
design.

Second, GeoAI enables human-in-the-loop modeling 
to include cartographers in visual design assessment. 
Despite the efficiency of machine learning metrics for 
cartographic evaluation, there is no objective “ground 
truth” dataset for most cartographic design decisions 
(Courtial et al., 2021). Thus, robust evaluations still 
require some human observation and intervention into 
the output quality of maps. Cartographers can guide 
GeoAI models to evaluate map qualities through visual 
assessments (Chen et al., 2021; Karsznia et al., 2022), 
effectively scaling the abilities of humans using GeoAI. 
For instance, Armstrong (2019) suggested training deep 
learning (i.e., DCNN) approaches to evaluate dot map 
quality, using the model to select the candidate maps for 

Table 3. An overview of the characteristics (including data formats, pros and cons) of six GeoAI models.
GeoAI 
Models

Primary Data 
Formats Pros Cons

Decision Tree Vector Good interpretability 1. Require manual parameter tuning 
2. Overfitting issues 
3. Overlook spatial characteristics

KG & SWT Vector Support reasoning Predefined ontological structures
DCNNs Raster 1. Extract complex visual and spatial features 

2. Higher performances
1. Require a large amount of labeled 
training dataset 
2. Extensive computational resources 
3. “Black-box” models

GCNs Vector Capacity for modeling irregular vector data 1. Require large amount of labeled 
training dataset 
2. Extensive computational resources 
3. “Black-box” models

GANs Raster Capability to generate new map designs Complex training and parameter tuning
RL Vector Address complex cartographic designs that involve a series of 

interdependent decisions
1. Require well-defined reward functions 
and actions 
2. Require a large amount of labeled 
training dataset 
3. Extensive computational resources

Figure 7. Number of sampled articles using each GeoAI model.
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human evaluation. Robinson (2019) performed 
a content analysis of maps by extracting objects and 
analyzing visual contents with computer vision techni-
ques. Similarly, Dobesova (2020) retrieved content and 
metadata from maps and matched maps that have simi-
lar visual styles. These assessments enabled by GeoAI 
are similar to map design critiques, which are com-
monly employed to evaluate a map’s design choices 
and its ability to effectively deliver geographic informa-
tion to the target audience. Therefore, GeoAI has the 
potential to complement conventional cartographic 
design critiques and enhance their efficiency. However, 
a drawback to human-in-the-loop GeoAI for cartogra-
phy is that it requires expert labor. Further, different 
experts bring unique perspectives and preferences, 
which will be averaged by human-in-the-loop GeoAI 
evaluations and therefore may not reward the more 
innovative designs. However, human-in-the-loop 
GeoAI still reduces the necessary expert labor for large- 
scale mapping projects, and may lead to more satisfying 
results since cartographers can still override GeoAI- 
driven metrics in support of their cartographic design 
vision.

5. Literature synthesis: GeoAI applications for 
cartography

In this section, we list emerging applications of GeoAI 
for solving cartographic design decisions. As introduced 
above, we follow the Map Design Fundamentals and 
Map Use entries in the Cartography and Visualization 
section of GISandT Body of Knowledge (2022) to clas-
sify these GeoAI applications for cartography. 
A sampled article can belong to multiple categories 
because a number of papers have utilized GeoAI for 
multiple cartographic tasks. We start each section by 
providing an overview of the cartographic design deci-
sion as summarized in the GIS&T Body of Knowledge, 
followed by a summary of GeoAI applications support-
ing that cartographic design decision.

5.1. Scale & map generalization

Map generalization is an important cartographic 
design decision that has attracted researchers’ atten-
tion for decades (Robinson, 1995), and was the most 
common GeoAI application in our sampled articles. 
Generalization refers to the process of abstracting 
and transforming geospatial data in order to mean-
ingfully reduce their detail (Raposo, 2017). Map gen-
eralization tasks are achieved through application of 
generalization operators (e.g., simplification, 
smoothing, and aggregation) to typically vector 

map data (e.g., points, polylines, and polygons) 
(Roth et al., 2011). AI was used for map general-
ization as early as the 1980s and researchers have 
employed deep learning for automating map general-
ization since 2018 (Feng et al., 2019; Sester et al.,  
2018). Touya et al. (2019) discuss the opportunities 
and challenges of GeoAI approaches for cartographic 
generalization.

The most common generalization operator for point- 
based generalization is selection, or choosing a subset of 
representative features from a given point pattern. 
Decision trees have been employed for point selection, 
primarily for human settlement selection based on 
population or other relevant attributes (Izabela & 
Karolina, 2020; Karsznia & Weibel, 2018; Karsznia 
et al., 2022; Lisiewicz & Karsznia, 2021).

In contrast, researchers have used DCNNs, GCNs, 
GANs, as well as decision trees for more complex polyline- 
based generalization solutions. These GeoAI models have 
been employed for the selection and simplification of road 
networks (Karsznia, Wereszczyńska, et al., 2022), moun-
tain roads (Courtial et al., 2020), river networks (Yan et al.,  
2022), and coastlines (Du, Wu, Xing, et al., 2022). Yu & 
Chen (2022a) and Du, Wu, Yin, et al. (2022) organized 
polylines as a set of points and used the points as input into 
neural networks to determine whether a vertex between 
two adjacent points should be retained or deleted. 
Researchers have utilized decision trees (Karsznia, 
Wereszczyńska, et al., 2022; Xu et al., 2019) and GCNs 
(Zheng et al., 2021) to select roads based on their char-
acteristics. Researchers also trained end-to-end DCNN 
and GAN approaches from raster maps directly to perform 
polyline generalization (Courtial et al., 2020, 2022a, 2022b; 
Du, Wu, Xing, et al., 2022).

GeoAI solutions for polygon-based cartographic gen-
eralization, particularly building generalization, has 
attracted more attention than point- and polyline- 
based solutions combined. Building generalization con-
tains two steps: namely, building grouping and footprint 
generalization (Li et al., 2004, 2021). Researchers have 
utilized GeoAI either to model the initial building group 
patterns or to perform both steps simultaneously. 
Random forests first were utilized for classifying build-
ings to determine whether they should be eliminated, 
retained, or aggregated (Lee et al., 2017), and later were 
used to classify building group patterns (He et al., 2018). 
DCNNs, GANs, and GCNs have been used to automate 
both steps of building generalization. Regarding build-
ing grouping patterns, researchers have constructed 
graphs to represent adjacent buildings and then 
employed GCNs to recognize building group patterns 
(Bei et al., 2019; Yan et al., 2020; Zhao et al., 2020) and 
classify the building group patterns (Yan et al., 2019).
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Several researchers also have trained end-to-end 
DCNNs and GANs approaches for extracting and gen-
eralizing buildings from aerial and topographic maps 
(Feng et al., 2019, 2020; Sester et al., 2018). Others have 
integrated generalization knowledge and constraints for 
building generalization and subsequent generalization 
evaluation (Courtial et al., 2021; Kang et al., 2021; Yang, 
Yuan, et al., 2022).

Finally, the evaluation of map generalization remains 
a thorny problem (Courtial et al., 2021). Despite estab-
lished first principles such as Töpfer’s radical law 
(Töpfer & Pillewizer, 1966), there is no readily accepted 
global measure for generalization quality (Touya, 2012). 
GeoAI offers one possible pathway for improving con-
sistency in generalization evaluation, and thus in gen-
eralization itself (Courtial et al., 2022a; Yang, Yuan, 
et al., 2022).

5.2. Symbolization

Map symbolization refers to the graphic encoding of 
geographic information (White, 2017). In this section, 
we summarize GeoAI for symbolization applications 
into two tasks: visual variable representation and map 
style transfer.

The visual variables (e.g., color, size, shape, texture) 
are the fundamental graphic dimensions across which 
a symbol can be varied to deliver information, with 
some visual variables better encoding nominal, ordinal, 
or numerical levels of measurement (MacEachren,  
1995). Choosing visual variables is an important step 
in map design, and thus forms a constraint that can be 
used by GeoAI models. Cartographers primarily utilize 
GeoAI approaches to manipulate the visual variables 
such as color (including color hue, color value, and 
color saturation) and shape. Regarding color, Chen 
et al. (2021) extracted several higher-level color palette 
characteristics such as order, match, harmony, discri-
mination, and uniformity from maps, and trained deci-
sion trees (AdaBoost) to evaluate the color quality of 
maps. Wu et al. (2022) utilized a multiple-constraint 
optimization approach and transferred color schemes 
from images (e.g., paintings and other maps) to maps 
and visualizations. Regarding shape, Yan et al. (2021) 
proposed a graph convolutional autoencoder model to 
learn the representations of building shapes. Further, 
Yan and Yang (2022) developed an encoder-decoder 
architecture for shape encoding which can represent 
raster-based (DCNNs), graph-based (GCNs), and 
sequence-based (LSTM) features. Beyond just focusing 
on individual visual variables, researchers have lever-
aged semantic web technologies and knowledge graphs 
to encode cartographic visual variables. They have built 

a cartographic ontology of visual variables – such as 
shape, color, and texture – and enabled logistic reason-
ing of cartographic knowledge (Huang & Harrie, 2020; 
Mai et al., 2022; Viry & Villanova-Oliver, 2021).

Map style transfer refers to the process of repro-
ducing artistic styles from existing maps, paintings, 
or other visual artwork to new input map data. 
A map style contains a set of coherent and distinct 
cartographic design characteristics that enable the 
audience to obtain various visual impressions and 
emotional reactions (Christophe et al., 2016; Kent,  
2009). Essentially, map style transfer is the task of 
converting a set of visual variables from existing 
maps to target maps, and therefore is an intersec-
tion between map symbolization and neural style 
transfer from computer science (Wu et al., 2022). 
To this end, Kang et al. (2019) successfully config-
ured GANs to transfer map styles from existing 
maps and paintings to simple styled map data. 
Map style transfer is an increasingly popular 
research topic throughout the cartography commu-
nity: Bogucka and Meng (2019) transferred styles 
from artwork (e.g., watercolor textures) to maps; 
Li et al. (2021) transferred historical map styles to 
OSM maps; Chen et al. (2021) developed 
SMAPGAN to transfer Google Map styles to simple 
styled maps and remote sensing images; Christophe 
et al. (2022) transferred maps from simple-styled to 
complex-styled maps; Ping and Dingli (2020) trans-
ferred styles for game maps; Jenny et al. (2021,  
2022), produced shaded relief with terrain maps; 
and Wong et al. (2022) analyzed changes of bridges 
over time by transferring historical map styles to 
topographic maps. Several commonly used GANs 
architectures include Pix2Pix (Isola et al., 2017) 
and CycleGAN (Zhu et al., 2017). There also are 
several studies that adopted similar approaches for 
transferring remote sensing and aerial images to 
topographic maps, although these are outside the 
scope of this section and instead are discussed in 
Section 5.7.

Despite the success of GANs in transferring map 
styles, the results of the primarily raster-based output 
maps face inherent drawbacks. The generated map out-
puts may have blurred regions and ambiguous map 
symbols and toponyms, potentially removing visually 
insignificant but semantically important features while 
dissolving topographic relationships among geographic 
objects (Christophe et al., 2022; Kang et al., 2019; Wu 
et al., 2022). A possible solution is to develop vector- 
based style transfer approaches. For instance, Wu et al. 
(2022) avoided the aforementioned drawbacks of raster- 
based approaches by transferring color schemes 
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between images and maps based on map features rather 
than pixels.

5.3. Typography

Typography describes the placement and styling of text 
added to the map to clarify details otherwise removed 
through generalization and symbolization choices 
(Guidero, 2017). Typography is an integral part of 
establishing the subject and tone of the map, but has 
received relatively less exploration with GeoAI than 
generalization and symbolization. GeoAI has been 
used for automatic label placement and additional 
annotation, which may enhance the effectiveness of 
the visual hierarchy of maps. Prior studies have utilized 
neural networks (Pokonieczny & Borkowska, 2019) and 
deep learning (Li et al., 2020) to determine where to best 
place labels around geographic objects. In addition, 
Harrie et al. (2022) employed DCNNs to evaluate the 
quality of label placement in city wayfinding maps, 
pointing to several future directions for GeoAI to con-
sider label geometrics, relationships with icons, and 
spacing as part of automated label placement. Notably, 
several sophisticated rule-based systems already have 
been developed to support typography in digital maps 
based on years of cartographic research and best prac-
tices, and these systems have demonstrated high efficacy 
in handling various typographic-related tasks. Perhaps 
consequently, the integration of GeoAI in map typogra-
phy has received less emphasis.

5.4. Map reading

Map reading is the process of discovering what is 
encoded in the map through human perception 
(Buckley & Kimerling, 2021). Map reading for GeoAI 
extends human perception to train computers how to 
decode map features. Through GeoAI-supported map 
reading, computers can recognize and identify feature 
locations, labels, and symbolized attributes from an 
input set of maps. Accordingly, map reading often is 
a necessary training step for GeoAI models used then to 
perform other generalization, symbolization, or typo-
graphy tasks. We observed two specific tasks from our 
sampled articles that enable machines to read maps: 
object extraction and ontology construction.

Object extraction solutions primarily are adopted 
from object detection, localization, semantic segmenta-
tion, and representation learning approach in computer 
vision and deep learning. Researchers have utilized 
DCNNs to detect point-, polyline-, and polygon-based 
features, such as road intersections (Saeedimoghaddam 
& Stepinski, 2020), mountain summits (Torres et al.,  

2018), building footprints (Chen et al., 2021b; Heitzler 
& Hurni, 2020; Uhl et al., 2018, 2020), road networks 
(Ekim et al., 2021; Jiao et al., 2022a, 2022b), bridges 
(Wong et al., 2022), highway interchanges (Touya & 
Lokhat, 2020), shape detection (Chen et al., 2021a), 
surface mine disturbance extents (Maxwell et al.,  
2020), hydrological features such as streams, rivers, wet-
lands, and lakes (Ståhl & Weimann, 2022; Wu et al.,  
2022a, 2022b; Xia et al., 2022), and archeological fea-
tures (Garcia-Molsosa et al., 2021). Researchers also 
used DCNNs to classify maps with or without buildings 
(Uhl et al., 2020), and classify road types of historical 
maps (Can et al., 2021). Most studies use raster data 
sources such as scanned topographic maps, historical 
maps, and DEMs (Digital Elevation Model) as the input 
for object extraction (see Jiao et al. (2021) and Chiang 
et al. (2020) for reviews). Broadly speaking, extracting 
objects from raster maps is a focused case of image 
object detection, localization, and segmentation in car-
tography. Vector-based object extraction is less com-
mon, perhaps logically so given the added location and 
attribute information joined to point, polyline, and 
polygon features. One notable approach by Yang et al. 
(2022) uses GCNs to detect interchanges from vector 
road networks.

In addition to detecting map features such as points, 
lines, and polygons in maps, researchers also have 
attempted to detect labels and pictorial objects from 
maps. Li et al. (2018) utilized faster R-CNNs to localize 
map labels and query gazetteers based on map contents. 
Researchers also have utilized segmentation-based 
DCNN approaches to detect texts from historical maps 
(Can & Erdem Kabadayi, 2021; Li et al., 2021; Weinman 
et al., 2019). Prior studies also have employed DCNNs 
to classify maps as pictorial vs. non-pictorial maps as 
well as detect certain objects such as sailing ships from 
maps (Schnürer et al., 2021).

Second, ontology construction describes the process 
of summarizing and structuring map knowledge. For 
manual ontology construction, cartographers define 
a set of concepts, categories, and relationships within 
related maps as a structured framework and then 
employ this framework to construct the ontology 
among maps. Once transformed into a knowledge 
base, maps can be interpreted coherently by both 
machines and humans (Varanka & Usery, 2018). 
Researchers have utilized knowledge graphs and seman-
tic web technologies to automate ontology construction 
from maps, which then enable computational reasoning 
for other cartographic design decisions. Varanka and 
Usery (2018) illustrated the usage of GeoSPARQL for 
visualizing map semantics. Huang and Harrie (2020) 
and Viry and Villanova-Oliver (2021) employed 
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semantic web technologies to build an ontology of map 
design components—including cartographic scale, 
styles, symbols, and legends—that allows users to 
retrieve cartographic and visualization knowledge. Mai 
et al. (2022) constructed a cartographic ontology includ-
ing content, symbols, and legends, to create a narrative- 
based cartographic knowledge graph system. Using 
these approaches, machines can not only read maps, 
but humans also can interactively explore, analyze, and 
query cartographic knowledge, keeping the human-in- 
the-loop.

5.5. Map interpretation

Map interpretation refers to the explanation of relation-
ships among map features and their corresponding fea-
tures in the world through human cognition (Kimerling 
et al., 2016). The distinction between map reading and 
map interpretation is that map reading concentrates on 
certain map objects, whereas map interpretation is 
essential to extract geographic information and identify 
relationships among map features. Therefore, map read-
ing can be considered as a pre-step of map interpreta-
tion. We observed two specific tasks that enable 
machines to interpret maps: map content inference 
and map feature alignment.

Map content inference describes identifying the geo-
graphic location and extent of a map. Evans et al. (2017) 
first developed a LiveMap system that could infer the 
locations of input maps, supported by a DCNN – 
ResNet approach. Subsequently, researchers utilized 
DCNNs to infer map scales (Touya et al., 2020), projec-
tions (Li & Xiao, 2019), and layer content (Hu et al.,  
2021; Li & Xiao, 2019; Tavakkol et al., 2019; Touya et al.,  
2020), effectively obtaining the meta-information of 
maps automatically using GeoAI. Further, Robinson 
and Zhu (2022) used a similar approach to trace the 
origin source of viral maps circulated through social 
media.

Map feature alignment refers to matching map fea-
tures from different maps. Aligning map features from 
historical maps and contemporary maps is useful for 
illustrating change over time. Duan et al. (2020) pro-
posed a vector-to-raster algorithm using reinforcement 
learning that aligns map features in historical maps with 
those in contemporary maps. Shbita et al. (2020) utilized 
knowledge graphs to construct a linked spatio-temporal 
data graph that matches geographic features at different 
times, allowing users to effectively query map features 
over time periods. Wu et al. (2022) leveraged a DCNN- 
based U-Net model for historical map registration that 
aligned historical maps at multiple time stamps.

5.6. Map analysis

Map analysis refers to the analytical reasoning about 
maps following their reading and interpretation. We 
only observed the use of GeoAI for map analysis to 
classify map types, indicating a potential gap for future 
research merging GeoAI, cartography, and spatial 
analysis.

Map type classification refers to the identification of 
phenomena of geographic patterns and cartographic 
representations portrayed in maps. It is a prerequisite 
step for further map analysis and spatial analysis, as 
maps with different types have different analytical pur-
poses and affordances. Researchers have utilized 
DCNNs to classify maps into multiple categories. 
Zhou et al. (2018) created a dataset and trained 
DCNNs to classify maps into seven types: topographic, 
urban, national, 3D, nighttime, orthophoto, and land 
maps. Yang et al. (2020) employed DCNNs to classify 
map themes based on the metadata, legend, and content 
of maps. Scheider and Huisjes (2019) utilized multiple 
approaches including decision trees and classified maps 
based on their extensive (i.e., increase with the size of 
their supporting object) and intensive (i.e., independent 
on the size of their responding map object) properties. 
Hosseini et al. (2022) developed an open-sourced soft-
ware MapReader that allows users to train and test 
models for map type classifications based on customized 
labels.

Compare to map interpretation, map analysis 
requires a high level of cognitive ability and prior 
knowledge. Accordingly, sophisticated insights related 
to spatial relationships, dynamics, and patterns could be 
discoverable using GeoAI such as, for instance, identify-
ing clustered regions and revealing flow relationships in 
maps (Roth, 2013). The current progress of GeoAI for 
map analysis has focused primarily on shallow geo-
graphic information. In the future, it is important to 
develop advanced GeoAI approaches to delve deeper 
into the analytical aspects of maps and deliver compre-
hensive geographic information that reveals complex 
spatial patterns and interactions within maps. The 
emergence of generative AI offers one potentially fruit-
ful available for new research on GeoAI applications to 
map analysis, as discussed in Section 7.2.

5.7. Map production

Map production refers to the multiple, often iterative 
steps for map creation (Buckingham, 2019). Map pro-
duction can be a laborious process often with rote 
design and editing tasks. GeoAI can facilitate different 
stages in the map production workflow to allow 
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cartographers to focus on more complex or creative 
tasks during design. However, the primary application 
of GeoAI for map production in the sampled articles 
was for the initial stages of map data preparation.

Map data preparation is a prerequisite step of 
using GeoAI for cartography because training 
GeoAI requires large-scale and high-quality geospa-
tial data. Researchers have developed approaches to 
either generate or enrich geospatial data for map 
production. Jin et al. (2021) have leveraged GeoAI 
to generate map tiles from remote sensing images, 
a process described as satellite-images – to-maps 
(si2map). The output of this process is a full map 
tileset rather than discrete map features and objects. 
Several novel GeoAI models have been developed for 
map production such as GeoGAN (Ganguli et al.,  
2019), SG-GAN (Zhang et al., 2020), and series 
GANs (Chen et al., 2022). Researchers also achieved 
the conversion from maps to satellite images using 
similar approaches (Xu & Zhao, 2018; Zhao et al.,  
2021). In addition, Yu & Chen (2022b) have lever-
aged an encoder-decoder structure to fill gaps of 
polylines which offers valuable insights for handling 
missing values in map data.

Prior studies also have attempted to enrich geospatial 
datasets using GeoAI, an application that often overlaps 
with map object detection. For instance, Jiao et al. 
(2022a) enriched a dataset by rotating road networks 
while preserving other features in the map such as num-
bers and triangulation points. By doing so, more map 
data for training GeoAI models can be generated. Li et al. 
(2021) generated text annotations on historical maps to 
enrich the training dataset. Hu et al. (2021) proposed 
a computational workflow that generates large-scale 
map datasets from vector data that considers multiple 
types of metadata (e.g., spatial extents, place names).

6. Social and ethical implications of GeoAI in 
cartography

Despite the success of research integrating GeoAI for 
cartography, we discovered through our review that 
discussion of the ethical implications of GeoAI for 
cartography remains underdeveloped. Ethics of 
GeoAI for cartography refers to the rules of conduct 
for researchers, professionals, and policymakers 
regarding acceptable and unacceptable application of 
GeoAI methods for cartographic design. Here, we 
draw on and extend discussions of ethics from carto-
graphy, GIScience, and computer science (e.g., 
Crampton, 1995; Goodchild et al., 2022; Janowicz 
et al., 2022; Jobin et al., 2019; Nelson et al., 2022; 
Zhao et al., 2021). Specifically, we raise five of 

potentially numerous ethical challenges facing GeoAI 
for cartography: commodification, responsibility, 
privacy, bias, and (together) transparency, explainabil-
ity, and provenance. We recognize that addressing 
every facet of ethics, especially considering the rela-
tively nascent discussion of ethics in GeoAI for carto-
graphy, is beyond the scope of this paper. However, 
we want to highlight some ethical dimensions of 
GeoAI for cartography prompted from our review 
that might serve as a foundation for future research 
and practices on the ethics of GeoAI for cartography.

6.1. Commodification

Commodification in cartography refers to releasing 
maps and map data as products that can be bought 
and sold on a market (Crampton, 1995). GeoAI 
approaches for cartography lead to at least three new 
map commodities: the map data and other visual art-
work used for training GeoAI applications, the GeoAI 
models and algorithms themselves, and the carto-
graphic output from GeoAI models (e.g., new artistic 
styles, evaluation metrics). Geospatial companies may 
monitor, collect, and even control users’ behaviors 
with their cartographic products to enhance their 
profit margin (Goss, 1995). Commodification of 
GeoAI-enabled map products raises new ethical ques-
tions around intellectual property, ownership, and 
access for cartography.

On the one hand, commodification may spur tech-
nological innovation, require new safeguards for intel-
lectual property rights, and lead to new copyright policy 
for GeoAI-assisted cartographic products (Kitchin & 
Lauriault, 2014). However, explicit guidelines and best 
practices on charging for access to copyrighted map 
products is lacking. Consider commodification under 
a hypothetical scenario on map style transfer. A user 
uploads unstyled, open source map data to a GeoAI- 
empowered map style transfer service along with images 
of paintings to use as the inspiration style. Who owns 
the copyright of the transferred map style? Should the 
service provider retain copyright for configuring the 
GeoAI model for public use and supplying the comput-
ing resources to employ the model? Should the user 
retain copyright for providing the map data and select-
ing the inspiration artwork; should they only retain 
copyright if they pay a certain fee? Finally, should the 
artists who created the paintings retain copyright, or at 
least reserve the right to license their artwork for public 
consumption, but without inclusion in AI training? 
Should the artists get royalties if their artwork is selected 
for style transfer? The existing copyright framework and 
trademark law, as well as the current open access 
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Creative Commons (CC) license system, do not address 
these issues. Cartographers and GIScientists need to 
have a voice in this conversation to ensure new AI 
copyright laws cover the nuances in our profession. 
Another potential solution for protecting the copyright 
of maps may refer to the Web3 applications supported 
by the decentralized blockchain technology (Potts & 
Rennie, 2019). However, the use of blockchain in prac-
tice opens addition ethical debates and needs further 
examination (Mitchell et al., 2019).

On the other hand, researchers prefer to endorse 
open-access datasets and models that empower the 
replicability and reproducibility of academic studies 
(Kitchin & Lauriault, 2014; Wilson et al., 2021). 
Furthermore, it is necessary to make open-source alter-
natives to proprietary GeoAI models in order to miti-
gate a growing digital divide in their access and use. 
However, the majority of GeoAI models currently are 
used and controlled by developed countries (Xaltius,  
2020), and charging for the GeoAI models and resulting 
cartographic products will widen the gap between devel-
oped and developing countries. Thus, it is necessary to 
strike a balance between premium and gratis services 
and products, and to advocate for equitable access to 
GeoAI models for cartography. Arguably, a new digital 
colonialism is emerging through the dominance of 
developed countries in AI technology, and new critical 
and ethical approaches are needed to rethink GeoAI for 
cartography as both an emerging commodity and an 
instrument of power (Kwet, 2019).

Finally, commodities are not made of their raw mate-
rials alone, but also comprise the labor used to make 
them. While GeoAI can automate some arduous tasks 
for cartographers so that they can focus on more crea-
tive work, is the ultimate goal of GeoAI for cartography 
complete automation of map design? Hopefully, the 
answer is no. But, as GeoAI is pursued within cartogra-
phy, we need to ask what is at stake for cartography as 
a profession and a labor market (Dubber et al., 2020; 
Zarifhonarvar, 2023), and what will we lose as human 
beings if map design is completely overtaken by 
machines?

6.2. Responsibility

As Griffin, (2020, p. 9) asks, “How much should we trust 
a machine-generated map”? To ensure that machine- 
generated maps are trustworthy, it is essential to articu-
late and regulate responsible GeoAI for cartography, or 
map applications of GeoAI that are performed appro-
priately and minimize harmful effects on people and the 
environment (Jobin et al., 2019).

GeoAI for cartography has potential to do real-world 
social good, such as enable real-time disaster and emer-
gency response mapping, monitor our changing climate 
and develop downscaled local interventions for adaptive 
management of climate change impacts, and reveal dee-
ply rooted social disparities and develop more equitable 
solutions for redistricting, resource allocation, and gov-
ernance. However, without a framework of responsible 
GeoAI for cartography, its application is likely to do as 
much or more harm than good (Elwood & Wilson,  
2017; Janowicz et al., 2022; Sieber, 2006). To limit 
abuse of GeoAI in cartography, it is necessary to recog-
nize who controls the map data, the cartographic narra-
tive, and the interpretation of maps. GeoAI models, just 
like maps, reflect the interests and viewpoints of their 
makers, and the application of GeoAI for cartography 
thereby escalates existing power dynamics. For instance, 
what could Participatory GeoAI look like, taking 
inspiration from public participation GIS (PPGIS), par-
ticipatory mapping, counter mapping, and collaborative 
mapping (Bosse, 2021; Chambers, 2006; Fagerholm 
et al., 2021; Peluso, 1995; Hodgson & Schroeder,  
2002). Such efforts may both clarify responsibility for 
and democratize control over GeoAI for cartography, 
ensuring that maps that are created and interpreted by 
GeoAI do not solely reflect the perspectives of those in 
power, but also involve (without abusing) the voices of 
marginalized and underrepresented communities.

Also, who should be responsible for the AI’s meta-
phorical “choices” when producing maps? In particular, 
who should be responsible if GeoAI models produce 
“unethical” maps that are inaccurate, misleading, pro-
pagandized, or even used for illegal activities? 
Answering these questions is challenging because for-
mally defining an ethical versus unethical map is chal-
lenging, and the definition may take different shapes to 
researchers, professionals, and policymakers and in dif-
ferent mapping contexts. For instance, the GIS 
Certification Institute Code of Ethics (GIS Certification 
Institute, 2022) outlines four “obligations” for profes-
sionals that read much like responsibilities: obligations 
to society, obligations to employers and funders, obliga-
tions to colleagues and the profession, and obligations 
to individuals in society (relating to geoprivacy below in 
Section 6.3). What is missing from these obligations 
when considering GeoAI? Researchers may be quick to 
point out these obligations do not require any deep 
engagement with the places and communities that are 
being mapped, an issue of extractive scholarship well- 
documented in cartography that GeoAI only exacer-
bates through scaling up the speed and coverage of 
such extractive practices. Similarly, policymakers may 
be quick to point out that these obligations focus on 
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people rather than the environment and its non-human 
inhabitants, and also do not require professionals to 
take actions beyond delivering the map. GeoAI may 
even complicate evidence-based policy and informed 
action given the potential for “fake maps” (Zhao et al.,  
2021).

Further, any delineation of an ethical versus unethi-
cal map will shift through time and across communities 
and cultures. For instance, Holloway’s (2007) Right 
Mapmaking: Five Ways to Make Maps for a Future to 
Be Possible provides an alternative to the aforemen-
tioned professional obligations, centering on five “per-
cepts” that drawn on multicultural ethos: reverence, the 
practice of generosity, commitment to the relationship 
with place, deep listening through direct-contact and 
stopping, and on belong to one body. These percepts 
are loosely connected to Hindu, Christian, Buddhist, 
Taoist, and Muslim morals, respectively, and therefore 
provide a potential model example of multicultural 
hybridity.

6.3. Geoprivacy

Geoprivacy refers to the protection of individuals’ right 
to protect their locational information from unwanted 
disclosure (Kounadi & Leitner, 2014; Kwan et al., 2004; 
Weidemann et al., 2018; Rao et al., 2020). As discussed 
above, GeoAI models are trained on map data from 
authoritative, commercial, and user-generated sources, 
each of which could contain confidential locational 
information. Privacy is an acute concern for user- 
generated data sources, as individuals may be contribut-
ing large volumes of spatial data unconsciously through 
social media and other location based services (Harvey,  
2013; Thatcher et al., 2018). In an era of “big data”, 
individuals may feel anonymous when volunteering 
information given the sheer volume and velocity of 
information posted to these streams. However, GeoAI 
models can make sense of big data streams larger than 
any single human can closely review, and thus might 
disclose intimate trajectories, activities, and behaviors 
that are previously concealed in the data, undermining 
individual geoprivacy. How do we educate users about 
new privacy concerns derived from GeoAI before they 
volunteer their data, and how do we prevent GeoAI 
from revealing private locational information when 
used for cartography?

While user-generated map data may be the most 
obvious concern regarding geoprivacy, GeoAI also has 
potential to reveal private information in both author-
itative and commercial data sources. Specifically, 
authoritative and commercial map data typically are 
aggregated or anonymized to preserve geoprivacy before 

publishing the dataset (e.g., Kounadi & Leitner, 2014). 
However, government and industry are not prevented 
from training their GeoAI models on individual-level 
data internally before publishing it for third-party usage. 
Arguably, the potential for nefarious misuse of private 
information by GeoAI actually is greater for authorita-
tive and commercial map data, in part because it is more 
difficult to monitor and research from outside these 
institutions. Perhaps the most high-profile example 
with authoritative data is predictive policing, an appli-
cation of GeoAI for cartography that has received fair 
criticism as a new form of racial and geographic profil-
ing (Jefferson, 2018; Lally, 2022). With commercial data, 
private locational information may become a service 
that can be purchased by marketers, making the users’ 
lives a product for sale (a fourth commodity, tying into 
the above discussion about commodification in 
Section 6.1). Geoprivacy requires that we ask “Who 
truly owns the big data?” and therefore who has the 
right to utilize these big data streams in GeoAI applica-
tions for cartography. For instance, what should happen 
to individual locational data when a company goes 
bankrupt (leaving no funding to manage sensitive infor-
mation) or merges with a parent company (with poten-
tially different operating policies and standards to which 
users previously agreed). When can authoritative, com-
mercial, or user-generated map data be subpoenaed in 
a trial or requested as a term of employment? Answers 
to these questions currently vary considerably by geo-
graphy. Finally, how can GeoAI models be more trans-
parent about how potentially-sensitive information is 
used while training the model (see additional discussion 
below in Section 6.5).

6.4. Bias

Bias describes the systematic errors, inaccuracies and 
misinformation, and skewed representations that are 
possibly present in the data, models, algorithms, or 
interpretations of GeoAI for cartography. All maps 
represent data that are subject to uncertainty 
(Couclelis, 2003), and these map data may vary in 
their accuracy, precision, currency, completeness, con-
sistency, etc (MacEachren et al., 2012). GeoAI models 
amplify these biases when learning from uncertain data 
during training and then applying biased patterns to 
output cartographic products. GeoAI approaches also 
may introduce new data biases when creating carto-
graphic outcomes such as representation bias, measure-
ment bias, and evaluation bias (Jobin et al., 2019; Miller,  
1995; Nelson et al., 2022) – and exhibit biases within 
their algorithmic structures (Kang et al., 2023; Roselli 
et al., 2019; Wu et al., 2023; Zou & Schiebinger, 2018), 
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since GeoAI models are developed by humans who 
themselves hold biases.

Bias also exists in where and who the training 
dataset includes. For instance, the quality of 
a crowdsourced dataset may vary across different 
regions. Specifically, the dataset might be sparse in 
rural areas compared to urban areas, which may 
cause an imbalance in the data representation 
(Zhang & Zhu, 2018). The dataset also may privilege 
particular groups of people by gender identity, race 
and ethnicity, sexual orientation, physical and cogni-
tive ability, age, education level, socioeconomic sta-
tus, and cultural background, among others 
(Stephens, 2013), leading to generated map products 
that work better for those holding power (D’Ignazio 
& Klein, 2016; Kelly, 2021). In contrast, the dataset 
might target marginalized groups of people due to 
historical or institutional reasons, leading the GeoAI 
model to overfit (and thus incorrectly predict) parti-
cular spatio-demographic patterns, such as the afore-
mentioned case of predictive policing (Jefferson,  
2018; Lally, 2022).

Therefore, it is necessary to observe, analyze, and 
mitigate bias in GeoAI applications for cartography. 
One potential solution is to train a GeoAI model that 
could be used to help humans assess different kinds of 
observed biases in modeled outcomes. Further, 
a potentially fruitful area of future research is to bring 
human-in-the-loop GeoAI to cartography to order to 
help observe and mitigate different forms of biases. 
Ultimately, researchers and practitioners in GeoAI for 
cartography should formalize their representational 
practices at the onset of a new project (e.g., Brown & 
Knopp, 2008; Kelly, 2021; Kirby et al., 2021; Pavlovskaya 
& Martin, 2007). They should prioritize marginalized 
use cases at all decision points in a project. It emphasizes 
not only the input training data and output map pro-
ducts but also who should and should not make use of 
the results and for what purpose. D’Ignazio and Klein 
(2020) offer seven data feminism principles that can 
serve as a guiding framework for addressing bias in 
GeoAI for cartography: examine power; challenge 
power; elevate emotion and embodiment; rethink bin-
aries and hierarchies; embrace pluralism; consider con-
text; and make labor visible. Arguably, each of these data 
feminism principles is a social and ethical implication in 
GeoAI for cartography beyond simply bias. Notably, 
early work in data feminism emphasizes application of 
these ethical guides to both design process and output 
(D’Ignazio & Klein, 2016), making transparency, 
explainability, and provenance (treated below) of the 
process an ethical imperative for GeoAI as applied to 
cartography and beyond.

6.5. Transparency, explainability, and provenance

Transparency and explainability together describe the 
ability to decompose, understand, and communicate 
the behaviors of a GeoAI model. Given the application 
of GeoAI to cartography, this also includes the ability to 
visualize or otherwise cartographically represent the 
map output at different stages of the modeling process.

Current AI models, especially deep learning 
approaches, often are described as “black-boxes” given 
that the researchers, professionals, or policymakers who 
use them may not, or, in many cases, cannot uncover the 
mechanism behind the output of models (Ricker, 2017). 
In these AI models, different parameters and initializa-
tion states produce widely different outcomes, making it 
difficult to gauge sensitivity of the model to these set-
tings as well as to reproduce consistent results. 
Transparency and explainability is essential for estab-
lishing responsibility and bias in the GeoAI models and 
building public trust in the cartographic output.

Making AI models transparent and explainable leads 
to the issue of provenance, or the ability to track GeoAI 
“choices” while the model is running. Provenance is 
particularly important for understanding how GeoAI 
models produce maps deemed as unethical, both to 
improve the underlying model for future use and to 
identify intentional misuses of the model. However, 
recording and retracing AI behaviors remains a major 
challenge. Relatedly, GeoAI techniques are evolving at 
a breakneck pace: how do we archive previous versions 
of a model or algorithm and track updates over time? At 
what point should a cartographic output be deprecated 
or “re-run” given updates to the underlying GeoAI 
model? Again, GeoAI could be used to track, document, 
and interpret the provenance of GeoAI models and 
outcomes for cartography.

7. Discussion

7.1. Takeaways of GeoAI for cartographic design 
decisions

Beyond specific models, applications, and ethical ques-
tions, we observed several overarching patterns from the 
review and synthesis. First, we noticed that cartographic 
design decisions that are primarily related to the map’s 
“mechanics” or basic construction, such as map general-
ization, map reading, and map production, have gar-
nered the most interest in the research literature to-date 
and appear to be the closest to professional automation. 
In contrast, more artistic and creative cartographic 
design decisions, such as symbolization and typography, 
have received relatively less attention, and the limited 
studies on these design topics have a relatively narrow 
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focus (e.g., visual variable representation, map style 
transfer). GeoAI is particularly adept at solving “engi-
neering” problems, and therefore may hold more 
immediate benefit for map construction over more crea-
tive aspects of the cartographic design process.

Further, there are a range of cartographic design 
decisions that have so far yielded minimal interest 
from the GeoAI research community. Among entries 
listed in the Map Design Fundamentals section of the 
GIS&T Body of Knowledge (2022), there were no papers 
in our sample on Statistical Mapping, Map Projections, 
Visual Hierarchy and Layout, Color Theory, or Design 
and Aesthetics. Accordingly, one potentially fruitful 
future research direction is employment of GeoAI on 
these cartographic design decisions using representation 
learning (Bengio et al., 2013). For example, cartographic 
design characteristics like projections, color schemes, 
visual hierarchy, and layout can be encoded as high- 
dimensional visual vectors that contain essential artistic 
and geographic information of maps, moving past map 
mechanics to explore the more artistic dimensions of 
map design. Another possible research direction is the 
development of a cartographic design recommendation 
system based on GeoAI. For instance, recommendations 
could include optimal classification approaches for 
choropleth maps, appropriate projections for different 
thematic map types at different scales, improved layouts 
to make better use of negative space, color palettes that 
work for different kinds of color vision deficiency, and 
so on. Such a GeoAI-enabled recommendation system 
built on cartographic expertise would help untrained 
mapmakers create reasonably-designed maps, making 
it easier for anyone to make their own maps and 
improving the communication quality of maps overall.

7.2. Future directions of GeoAI for cartography

In addition to the above takeaways, we identified four 
key gaps between the existing literature on GeoAI for 
cartography and trends in AI broadly: GeoAI-enabled 
active cartographic symbolism, human-in-the-loop 
GeoAI for cartography, GeoAI-based mapping-as 
-a-service, and generative AI for cartography.

First, GeoAI can enable active symbolism, or the use 
of GeoAI by cartographers to generate and evaluate 
alternative cartographic design options that meet spe-
cific map use and user contexts (Armstrong, 2019). 
Several early attempts to automate cartographic design 
through intelligent systems took a rule-based 
approach, which distills cartographic expertise and 
time-tested recommendations into a set of pre- 
defined rules for use in a decision tree, optimization 
function, etc (e.g., Buttenfield & McMaster, 1991; 

Jones & Mark Ware, 2005; Kang, 2020; Yan et al.,  
2019). While cartography has developed a canon of 
principles to inform design, the actual cartographic 
design process is far more non-linear and iterative 
than a rule-based system suggests (Nestel, 2019). 
Emerging GeoAI models do not need input rules, 
however, and instead take a pattern-based approach 
to learn cartographic principles and subsequently 
apply these patterns to new maps (Kang, 2020; Yan 
et al., 2019). Thus, GeoAI can serve an exploratory 
role for cartographers, using different inspiration 
input maps and artwork to break from dominant 
conventions in cartographic design. Arguably, map 
style transfer has gotten the closest to active carto-
graphic symbolism to-date (Christophe et al., 2022; 
Kang et al., 2019); however, this approach could sup-
port creative brainstorming across the cartographic 
design decisions discussed in the Cartography and 
Visualization section of the GIS&T Body of 
Knowledge (2022). Active symbolism also can be used 
to evaluate differences in cartographic design across 
regions and cultures, and even adapt design of digital 
maps as they move across place on mobile devices to 
improve effectiveness and sensitively for local contexts 
(Roth et al., 2023).

Second, human-in-the-loop GeoAI has the potential 
to further empower cartographers (Zanzotto, 2019), 
going a step beyond active symbolism that only enables 
humans at the output stage to make the designer 
a participant in decision making as the model is running. 
Human-in-the-loop GeoAI relates to model steering, an 
early initiative of visualization in scientific computing 
(McCormick, 1988), and now core tenet of geovisual 
analytics, with the goal of supplying map interfaces to 
computational methods in support of sophisticated ana-
lytical reasoning (Andrienko et al., 2007). Human-in-the- 
loop GeoAI keeps decision-making authority in the 
hands of the cartographer, allowing them to bend the 
output design to their needs and preferences. Human-in- 
the-loop GeoAI for cartography also represents a major 
step toward transparency, explainability, and prove-
nance, and therefore has important ethical implications 
as well. Finally, putting the human-in-the-loop has the 
potential to save computational resources, as meaningless 
or suboptimal designs can be abandoned early in the 
model processing, aligning with green cartography initia-
tives to reduce energy consumption and the associated 
carbon footprint (Han et al., 2021).

Third, GeoAI can support mapping-as-a-service, 
shifting focus from the map as a single product and to 
the map as a platform supporting online map design 
(Overstall, 2021). Proprietary mapping-as-a-service 
platforms such as ArcGIS Online, Carto, Felt, and 
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Mapbox Studio have replaced traditional desktop GIS 
for many mapping needs, enabling users to collate map 
data, customize basemap tilesets, and produce and share 
simple thematic maps. GeoAI combined with cloud 
services have the potential to enhance mapping-as 
-a-service platforms with advanced spatial analytics as 
well as supply the aforementioned design recommenda-
tions for beginning users. Notably, mapping-as-a-ser-
vice exacerbates the ethical challenge of 
commodification, as the costs associated with serving 
GeoAI-based map services online may prohibit compe-
titive open source solutions, leading to “freemium” 
models that restrict access to advanced features without 
a subscription.

Finally, the emergence of generative AI presents both 
new opportunities and new ethical challenges for carto-
graphy. Generative AI models such as ChatGPT2 and 
DALL·E 23 have received significant public attention 
due to their ability to communicate in natural language 
and generate realistic images and, potentially, realistic- 
looking maps (Kang, Zhang, et al., 2023). These genera-
tive AI models usually are supported by several large 
language models (LLM), and enable text-to-text (e.g., 
ChatGPT) or text-to-image generation applications 
(e.g., DALL·E 2). Some models even allow image-to-text 
generations (Li et al., 2023; Schuhmann et al., 2022). 
Other generative AI include Google’s Bard,4 

Midjourney,5 and Stable Diffusion.6 Notably, during the 
timeframe of our review and synthesis (before 
December 2022), we did not observe mention or applica-
tion of any of these generative AI models for cartography 
given the recency of their development. Since, several 
exploratory projects have emerged and have demon-
strated the current possibilities and limitations of gen-
erative AI for cartographic applications (Kang, Zhang, 
et al., 2023; Tao & Xu, 2023). While it is impossible to 
predict where generative AI will be in 5, 10, or 25 years, it 
is very possible that our review and synthesis presented 
outlines the history of GeoAI for cartography before 
a new era of generative GeoAI. While these generative 
AI models hold the potential to fundamentally change 
cartography and GIScience, they also pose new ethical 
concerns around commodification, responsibility, geo-
privacy, bias, and transparency/explainability/prove-
nance. At the time of this writing, generative AI has 
sparked debates regarding its social and ethical implica-
tions such as future employment prospects 
(Zarifhonarvar, 2023), trustworthiness (Tlili et al.,  
2023), and potential negative effects of unrestricted tech-
nological development (King & chatGPT, 2023; van Dis 
et al., 2023). Therefore, it is necessary to carefully con-
sider the potential ethical issues related to the generative 
AI in cartography. For instance, Kang, Zhang, & Roth 

et al. (2023) have discussed several potential ethical con-
cerns that may arise from AI-generated maps including 
inaccuracies, misleading information, unanticipated fea-
tures, and irreproducibility.

7.3. Related research foci

We framed our synthesis and review as “GeoAI for 
cartography,” but, as a nascent research thrust, even 
this phrasing may evolve over time. Since we completed 
the review in December 2022, similar research has been 
framed as MapAI (Robinson, 2023) and CartoAI (Feng 
et al., 2023). Is there a set of objectives and techniques 
common among GeoAI for cartography, CartoAI, and 
MapAI, or do these possibly represent different research 
perspectives? Further, ambiguity remains between the 
terms AI and GeoAI: if all or most data are spatial, does 
that mean all AI is GeoAI? In this section, we engage 
with these concepts to stimulate further discussion and 
reflection about the concordances and dissonances 
among these terms.

Janowicz et al. (2020) introduced Geospatial 
Artificial Intelligence (GeoAI) as “a subfield of spatial 
data science utilizes advancements in techniques and 
data cultures to support the creation of more intelligent 
geographic information as well as methods, systems, and 
services for a variety of downstream tasks,” and Gao 
(2021) defined GeoAI “to develop intelligent computer 
programs to mimic the processes of human perception, 
spatial reasoning, and discovery about geographical phe-
nomena and dynamics; to advance our knowledge; and to 
solve problems in human environmental systems and 
their interactions, with a focus on spatial contexts and 
roots in geography or geographic information science 
(GIScience).” Both definitions are intertwined with the 
concept of artificial intelligence (AI) but with a special 
focus on geographic components. Broadly speaking, any 
applications of AI that address geographic problems 
belong to GeoAI, lthough the ultimate promise of 
GeoAI perhaps is development of spatially explicit mod-
els, i.e., empowering AI with spatial thinking and rea-
soning capabilities.

MapAI and CartoAI originate from the names of two 
conference workshops that specifically focused on the 
utilization of AI for cartography. MapAI explores the 
“ideation and practical experimentation collaboratively 
explore some of the potential and limits of current AI 
technologies for cartographic practice and map use” 
(Robinson, 2023), and CartoAI is defined as “artificial 
intelligence techniques applied to cartography” (Feng 
et al., 2023). These definitions underscore the applica-
tions of AI in cartography. Beyond their original con-
ceptions, we propose that these two terms may contain 
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more expansive implications for future studies. 
Specifically, MapAI could potentially include broader 
contexts such as the integration of AI in high- 
resolution maps utilized in autonomous vehicles and 
the utilization of AI in map making from remote sen-
sing images. These applications may not inherently 
involve cartographic design principles. In comparison, 
the concept of CartoAI might focus more on the encod-
ing of cartographic principles within AI models, thereby 
addressing complex cartographic design decisions. Such 
a focus includes more aesthetic and artistic dimensions 
of cartography, reflecting a synthesis of design, func-
tionality, and innovation in map creation and 
representation.

In sum, this paper concentrates on the applica-
tions of GeoAI for cartography, and highlights how 
GeoAI can be leveraged to support cartographic 
design decisions. Terms including GeoAI for carto-
graphy, AI for cartography, CartoAI, and MapAI 
might be interchangeable for most contexts, espe-
cially as their differences are quite subtle at the 
moment. However, as the cartography studies and 
AI technologies continue to evolve, precise defini-
tions and differentiations might be needed in future 
studies to distinguish them.

7.4. Limitations

Despite the success and promise of integrating GeoAI 
approaches to support cartographic design, they are still 
far from perfect. Similarly, the review and synthesis 
reported here has several limitations. First, despite hav-
ing produced promising results, a large proportion of 
existing GeoAI technologies are still far from being 
applied to real-world cartographic applications. For 
example, certain GeoAI models may struggle to preserve 
spatial and topological structures in maps, leading to the 
loss of important geographic objects, blurred regions, 
and distorted cartographic outputs (Courtial et al., 2020; 
Griffin, 2020; Wu et al., 2022). Thus, just because we 
summarize GeoAI for cartography in research contexts 
does not mean these processes are transferable to pro-
fessional design yet.

Second, even though it is necessary to involve the 
human-in-the-loop throughout the development and 
evaluation of GeoAI, different people may have distinct 
preferences and tastes regarding map design. Moreover, 
best practices and conventions in cartography evolve 
over time, and we acknowledge there are many reasons 
to break from these best practices and conventions with 
any given map. Existing GeoAI approaches often rely on 
learning average patterns from large-scale datasets and 
neglect unique or novel styles that actually might reflect 

elite design in cartography. Thus, GeoAI may never be 
able to fully realize the diverse map design derived from 
professional cartographers, or innovate design beyond 
the status quo.

Finally, while we attempted to provide a comprehensive 
overview of GeoAI in cartography, it is necessary to 
acknowledge that there might be instances of overlooked 
papers. We only included papers written in English and 
similarly present this review in English only given our own 
constraints as scholars working at English-speaking uni-
versities. However, additional research on GeoAI for carto-
graphy has been published in Chinese (Ai, 2021; Wang 
et al., 2022), Russian (Poshivaylo & Kolesnikov, 2021), and 
other languages. Some literature, including conference 
papers not indexed by Scopus, might be absent from our 
review, although the backwards search did help us identify 
relevant papers in the International Cartography 
Conference (ICC) and AutoCarto proceedings. Further, 
despite that such keyword-based search strategy has been 
widely adopted and utilized in literature review studies, it is 
necessary to acknowledge several broader issues associated 
with reliance on algorithms for literature selection that 
potentially narrow the scope of the reviewed papers. 
Hence, we advocate for more critical and reflexive 
approaches in future review papers as GeoAI for cartogra-
phy grows.

8. Conclusion

In this article, we presented a comprehensive content 
analysis and narrative synthesis of research studies that 
integrated GeoAI in cartography. We outlined current 
research and advancements in the usage of GeoAI for 
cartographic design. To do so, we first introduced data 
sources, data formats, GeoAI methods, and evaluations 
of integrating GeoAI in cartography. Notably, six pri-
mary GeoAI models are demonstrated including deci-
sion trees, knowledge graph and semantic web 
technologies, deep convolutional neural networks, gen-
erative adversarial networks, graph neural networks, 
and reinforcement learning. We then summarized 
seven applications of GeoAI for cartographic design 
decisions including generalization, symbolization, typo-
graphy, map reading, map interpretation, map analysis, 
and map production. After that, we raised five key 
ethical challenges regarding GeoAI for cartography: 
commodification, responsibility, privacy, bias, and 
(together) transparency, explainability, and provenance. 
Finally, we proposed and discussed four promising 
research directions in this emerging field including 
GeoAI-enabled active cartographic symbolism, human- 
in-the-loop GeoAI for cartography, GeoAI-based 
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mapping-as-a-service, and generative GeoAI for 
cartography.

Our study offers valuable insights and contributions 
for researchers, professionals, and policymakers. For 
researchers, we demonstrate the current progress of 
GeoAI for cartography and offer a comprehensive illus-
tration of how GeoAI could support different carto-
graphic design decisions. For professionals, our review 
guides best practices regarding how GeoAI models and 
methods can be leveraged during cartographic design to 
facilitate their mapmaking processes. For policymakers 
and researchers in critical cartography and GIS, we 
emphasize the significance of integrating responsible 
and ethical practices when drawing on GeoAI for carto-
graphic design. By highlighting several ethical implica-
tions, we contribute to discussions regarding the 
development of equitable and inclusive GeoAI 
technology.

At the end of this review, we raise a pivotal question 
that worth further discussion in the future: “When 
should we not use GeoAI for cartography?” Reflecting 
upon this question may not only facilitate the develop-
ment of ethical GeoAI for cartography, but also provide 
a better understanding of the practical scope and cap-
abilities of GeoAI in cartography. We invite our readers 
to participate in this discussion, as the integration of 
a wide range of perspectives is vital to assure the ethical 
development and use of GeoAI in cartography.

Notes

1. https://www.scopus.com/
2. https://openai.com/blog/chatgpt
3. https://openai.com/dall-e-2
4. https://bard.google.com/
5. https://www.midjourney.com/
6. https://stablediffusionweb.com/
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