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Abstract: With the ubiquitous use of location-based services, large-scale individual-level
location data has been widely collected through location-awareness devices. Geoprivacy
concerns arise on the issues of user identity de-anonymization and location exposure. In
this work, we investigate the effectiveness of geomasking techniques for protecting the geo-
privacy of active Twitter users who frequently share geotagged tweets in their home and
work locations. By analyzing over 38,000 geotagged tweets of 93 active Twitter users in
three U.S. cities, the two-dimensional Gaussian masking technique with proper standard
deviation settings is found to be more effective to protect user’s location privacy while
sacrificing geospatial analytical resolution than the random perturbation masking method
and the aggregation on traffic analysis zones. Furthermore, a three-dimensional theoretical
framework considering privacy, analytics, and uncertainty factors simultaneously is pro-
posed to assess geomasking techniques. Our research offers insights into geoprivacy con-
cerns of social media users’ georeferenced data sharing for future development of location-
based applications and services.
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1 Introduction

The availability of location-based services has made the collection of large-scale individual-
level location data through the use of mobile phones, GPS devices, and geotagged social
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media commonplace [34, 58]. While such location-based big data provides new opportu-
nities to study human mobility patterns and transportation models [6, 13, 21, 32], complex
human-environment interactions [18,26,34,39,49], socioeconomic characteristics [22,31,35],
urban spatial structure and changes [20, 59], disaster responses [23, 54, 55], and location
business intelligence [48], it also introduces challenges regarding the protection of location
privacy [51]. Furthermore, there are increasing concerns about the social, ethical, legal,
and behavioral implications of geoprivacy caused by user identity de-anonymization and
location exposures [5, 27, 50].

Figure 1: The spatial distribution of geotagged tweets around a Twitter user’s home.

Generally speaking, geoprivacy refers to an individual’s rights to prevent the disclosure
of personal sensitive locations including but not limit to their home, workplace, daily activ-
ity places, and travel trips [30]. However, the majority of people are unaware of how the un-
derlying location-related technologies work and what can be inferred from an individual’s
location records that are collected when people use various location-based services [27] .
Figure 1 shows the spatial distribution of geotagged tweets around a Twitter user’s home.
Obviously, the home location of this individual can be easily identified through his/her
digital footprint on social media with high confidence [21]. As a result, researchers have
developed a number of statistical approaches and technical solutions aimed to protect in-
dividuals from being identified through their location records. A common practice for pre-
serving data confidentiality is aggregation such that detailed individual records are merged
into anonymized large-group characteristics. For example, aggregating individual home
location into geographic or administrative units. Aggregating raw address points into such
identical polygons makes the inference of original locations hard and user privacy becomes
a k-anonymity problem [8, 14, 42]. There exist several location obfuscation approaches for
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achieving k-anonymity [8, 15, 28]. However, aggregation may reduce the spatial resolution
of analysis that can be conducted and reduce the effectiveness of the analysis [30]. Another
family of approaches is called geomasking in which the original location may be hidden
or modified for geoprivacy protection but the spatial point patterns are not significantly
affected.

There is a rich history of literature on leveraging geographical masking to preserve the
confidentiality of health records and trajectory data. With child leukemia lymphoma data
from North Humberside, England, Armstrong et al. [4] described and evaluated several
types of geographical masks to protect personal privacy as well as to allow the conduct of
valid spatial analyses. Kwan [30] examined the effects of random perturbation masks on
the results of a spatial analysis using data on lung-cancer deaths. Three different random
perturbation masks were implemented with each at three different levels of introduced er-
ror. Hampton et al. [17] extended existing methods of random perturbation by developing
an adaptive geomasking technique known as the donut method. This method guarantees
that each geocoded address is not randomly assigned on or too near its original location.
Compared with random perturbation method, the performance of k-anonymity using the
proposed donut method was at least 42.7% higher in geoprivacy measures and was less
than 4.8% in cluster detection measures. Seidl et al. [46] examined the grid masking and
random perturbation techniques for anonymizing the GPS trajectory data and tested the
preservation of both privacy and spatial patterns. They found that as the distance thresh-
olds for grid masking and random perturbation increase, the correlation between density
patterns decreases.

However, the use of geographical masking methods to prevent the disclosure of sensi-
tive locations of social media users is still not well addressed. Location-based social media
data is different from other existing data sources (e.g., health survey and GPS trajectories)
due to its innate characteristics such as data sparsity and sampling bias, spatiotemporal
distribution heterogeneity, and location representativeness and uncertainty [21,33]. To this
end, we aim to investigate the effectiveness of geomasking techniques for protecting the
geoprivacy of active Twitter users who frequently share geotagged tweets in their home or
work location. To the best of our knowledge, this work is a first attempt in this direction
using individual-level location-based social media data. Additionally, a theoretical frame-
work considering privacy, analytics, and uncertainty factors simultaneously is proposed to
assess different geomasking techniques.

2 Related work

Geomasking has been used in public health and spatial analysis for decades in order to
protect sensitive information. Much of the literature on geomasking has been done on data
with a fairly coarse spatial and temporal resolution. Twitter data, on the other hand, are
frequent and may occur in a relatively small geographic area. In order to inform ourselves
on the nature of obfuscating a varying density of geospatial data, we need to investigate
novel and traditional geomasking techniques.

Voronoi masking relies on the creation of Voronoi polygons around individual point
features, and then, for those points to be relocated to the nearest edge of its bounding
polygon. This method is shown to be robust with lower resolution spatial data, about
23 persons/km2 of population density [47]. It is also effective in reducing the likelihood
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of false identification of true household location because the points are often relocated to
boundaries of parcels. Since Voronoi masking is not randomly generated and dependent on
the spatial structure of points, it may preserve the original locations, however, as polygons.
Given the nature of geotagged tweets, it would not benefit user privacy to create hundreds
of polygons which still lie on or near the location of concern, whether it be home or work.
This issue is inherent in high resolution spatial data. It may be beneficial to repeat the
Voronoi masking process a second time. The nearest edge to a polygon centroid may be
the nearest edge for more than one centroid and therefore it is possible that the number of
unique locations will be reduced after the initial masking. This process would lower the
resolution of the dataset and possibly reduce the true location detection accuracy after two
or more iterations.

On the other hand, Seidl et al. [47] show that grid masking is not an effective method
for preserving spatial analysis at the aforementioned low resolution. In this case, the as-
signment of points along a uniform grid amounts to aggregation over the area of the grid.
This may be a beneficial method at high resolutions as we are able to set the size of the grid
to a much smaller area and in essence create our own minor aggregation units without
displacing the points nearly as far [47].

A multiscale geomasking technique by which locations are converted to Military Grid
Reference System (MGRS) coordinates provides a unique amount of control over the ad-
justed locations [7]. MGRS eastings and northings provide 5 levels at which to mask data
in increments of powers of ten from 1, 10, 100, 1000, and 10000 meters. Points are displaced
along axes from the original point along the grid system. Tests show the method is in-
vertible and, after Level 3, loses almost all overlap between masked and unmasked points
indicative of personal location information. These tests were conducted on 2,000 randomly
generated points in GIS software. This method also resembles grid masking such that the
displacement of points is done along the eastings and northings from the origin [7]. The
ability to control random perturbations along MGRS easting and northings is a form of
high resolution grid masking that is worthwhile to compare with traditional grid masking.

A further consideration for the preservation of spatial characteristics as well as privacy,
is topology. Given a set of parcels or an easily obtained base map such as OpenStreetMap
(OSM), we can ground truth residential, work, or school locations based on spatiotempo-
ral tweet patterns. Relocating points just outside of parcels or to a road center line, was
shown via survey to introduce more uncertainty among participants as to actual location
points [45]. Those points displaced within a parcel or along a parcel boundary induced
less uncertainty. In addition to cluster detection, the reduction in map-user confidence is a
unique measure for determining the effectiveness of geomasking. This method may be use-
ful in distorting user perceptions of point clusters and reduce the likelihood of inferring a
Twitter user’s home or place of employment [45]. Geoprivacy is not limited to the users’ ge-
ometric coordinate information [40]. The user-generated social media content includes rich
semantic signatures (i.e., spatial, temporal, and thematic patterns) [1, 24, 38, 39, 62], which
may also reveal distinct place-based patterns and cause potential privacy risks. McKenzie
et al. [40] illustrate how protecting place-based information differs from a purely spatial
perspective using location-based social networking check-in data.

In the statistics and computer science communities, the trade-off between utility and the
level of differential privacy guaranteed by a processing mechanism has been considered in
several privacy-preserving learning approaches such as private support vector machine
(SVM) learning [44] and private Bayesian inference [61]. The key concern in the study

www.josis.org

http://www.josis.org


GEOPRIVACY OF TWITTER USERS 109

of differential privacy is whether the published aggregation information from a statistical
database would disclose private individual information. Regarding location-based sys-
tems or services (LBS), a mechanism to draw random noise to the user’s location from a
planar Laplace distribution has been proposed to guarantee geo-indistinguishability [3].
In [19], a differential private pattern mining algorithm was proposed for geographic loca-
tion discovery using a combination of region quadtree spatial decomposition and a density-
based clustering algorithm. The experiments were conducted using synthetic datasets and
showed the feasibility of their proposed algorithm to achieve the differential privacy goal.
In addition, privacy-preservation can be achieved through the process of obfuscation with
degrading the quality of information about a person’s location using spatial and temporal
cloaking [9, 15]. A geographic graph model of obfuscation for protecting an individual’s
location privacy in LBS was demonstrated in [8]. Moreover, a comprehensive survey of
computational location privacy for broader implications was conducted in [28].

3 Methods

In this research, we are concerned with individual user coordinate information and survey
the effectiveness of three popular geomasking techniques: Aggregation, Random Perturba-
tion, and Gaussian Perturbation, for the preservation of Twitter users’ location privacy [4].
One open-source geomasking implementation in R can be accessed via the GitHub reposi-
tory1.

Aggregation: merges individual geotagged tweet points into polygons into which those
points fall. Different types of administrative boundaries such as census blocks, tracts, and
traffic analysis zones or vague cognitive regions (e.g., downtown) could be candidate poly-
gons [12]. And the centroids of those spatially overlaying polygons are used as the coordi-
nates of those tweets.

Random Perturbation: is a geomasking approach in which each point is displaced in
space by a randomly determined distance and direction [4, 30]. A distance threshold is
typically added to set the allowed maximum displacement distance in the case of uniform
geomasking. As shown in Figure 2, the original posted locations of the geotagged tweets
of a Twitter user are randomly displaced within a 1km distance radius.

Gaussian Perturbation: uses a two-dimensional isotropic (i.e., circularly symmetric)
Gaussian kernel to control the random displacement process of a point set such that the
distribution of those displaced points follows a two-dimensional Gaussian (“bell-shaped”)
form [11, 60]:

G(x, y) = (1/2πδ2)e−(x2+y2)/2δ2 (1)

δ =

√∑
n
i (xi − x̄)2

n
+

∑
n
i (yi − ȳ)2

n
(2)

Where (x, y) is the 2D coordinates of each location after displacement, and δ specifies
the standard deviation (SD) of the positional error, (x̄,ȳ) is the mean center of a point set,
and n is the total number of points. As shown in Figure 2, with the increment of the stan-
dard deviation, the displacement of those points spreads more widely. The derived spatial

1https://github.com/claudiofronterre/geomask
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Figure 2: The Gaussian geomasking with different standard deviations (SD) and the ran-
dom perturbation with 1km and 2km threshold of a user’s geotagged tweets.

point patterns with a large standard deviation may not capture the original spatial density
distribution of an individual’s digital footprints.

After the perturbation processing of the original locations, we need to further determine
whether users’ home or work location (two of the most sensitive places for an individual’s
geoprivacy) can still be identified through state-of-the-art location detection algorithms.
Specifically, we explored different parameter calibrations for the density-based spatial clus-
tering with noise (DBSCAN) [10,21,35] that has been widely used in spatial clustering and
the identification of significant human activity places. The DBSCAN algorithm requires
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two parameters: the searching radius of a cluster (Eps) and the minimum number of points
(MinPts) within a cluster. The different combinations of Eps and MinPts values may get
different spatial clustering results [20, 37]. In the case of detecting Twitter users’ home or
work location, the parameter calibration may generate different candidate clusters or dis-
tance shifts from the actual location. Therefore, we have explored different scenarios with
varying parameter values for the perturbation and the spatial clustering steps. In each op-
eration of the perturbation and the clustering, two representative centers (i.e., centroid and
medoid) are calculated for further calculation of shift distance from the true home or work
location. The centroid is the weighted sum of geotagged tweets’ coordinates in a cluster
and it might not be one of the original locations, while the medoid can be defined as the
point of a cluster whose average distance to all the objects in the cluster is minimal [52,53].

Evaluation Measures: In addition to the shift distance to ground-truth locations, the fol-
lowing quality measures are also used in this study to evaluate the effectiveness of different
geomasking approaches. Those measures are defined in terms of the following four cases:
true positive (TP), true negative (TN), false positive (FP), and false negative (FN) [2,29,43].
TP is the number of points correctly identified as home or work locations after geomasking
and cluster analysis in each period (daytime or nighttime). TN is the number of points cor-
rectly identified as not-home or not-work locations. FP is the number of points incorrectly
identified as home or work locations. FN is the number of points incorrectly identified as
non-home or non-work locations.

• Overall accuracy = (TN+TP)/(TN+TP+FN+FP) is the ratio between the number of
correctly identified home (work) and not-home (not-work) cluster points (including
both TP and TN cases) and the total number of points in each period. It serves as a
general accuracy measure. Usually, the higher the value is, the worse the associated
geomasking is in protecting geoprivacy.

• Precision = TP/(TP+FP) is the ratio between the number of correctly identified home
or work cluster points and the total number of locations that are identified as home
or work locations (all positive predictions). A high precision shows that, among all
the positive predictions, the method gets more home or work cluster points that are
correctly identified than the home or work cluster points that are incorrectly identi-
fied.

• Sensitivity = TP/(TP+FN) (also known as Recall) is the ratio between the number of
correctly identified home or work cluster points and the total number of true home
or work locations. A high recall shows that the results discover a larger fraction of
the home or work cluster points.

• Specificity = TN/(TN+FP) is the ratio between the number of correctly identified non-
home or non-work cluster points and the total number of true non-home or non-work
locations. It shows how good a method is for detecting a user’s non-home or non-
work location after geomasking.

• Balanced accuracy = (Sensitivity+Specificity)/2 is a measure that combines sensitivity
and specificity. It considers the imbalance of a dataset and shows a balanced perfor-
mance on how accurate a method is. If the data is imbalanced, then the balanced
accuracy is suggested to be used as an accuracy measure.

• F1-score = 2*Precision*Recall/(Precision+Recall) is a measure that combines precision
and recall. It shows a balanced performance on how effective a method is for detecting
a user’s home or work cluster location after geomasking.

JOSIS, Number 19 (2019), pp. 105–129



112 GAO ET AL.

Figure 3: The boxplot of overall accuracy changes of home cluster detection with different
DBSCAN parameters (without geomasking).

4 Experiments and results

We selected 93 active Twitter users who have frequently posted geotagged tweets in three
U.S. urban areas: two metropolitan areas (Washington DC and Los Angeles) and one
smaller urban area (the City of Madison, Wisconsin). Over 38,000 geotagged tweets were
collected only from users’ mobile phone devices such that their location information is most
accurate for human mobility studies [13, 22, 33]. We selected these three areas (two large
cities located on the east coast and the west coast respectively, and one city located in the
Midwest) as representations of the U.S. urban areas. Another reason was our familiarity
of the geographic backgrounds of the three cities, which helped the location ground-truth
labeling and validation process. Up to 3,200 tweets can be fetched for each individual
Twitter user due to the API access limit. The anchor points (i.e., the location of home and
work) [16, 41, 56, 57] are two most important locations for an individual and are chosen as
the target place type for geoprivacy protection. We manually identified their home and
work locations as the ground-truth by overlaying their nighttime (8pm-7am) and daytime
(9am-5pm) geotagged tweets onto the high-resolution (about 2m-4m) Digital Globe aerial
images and the OpenStreetMap (OSM) points of interest layer. Another important rule
for the ground-truth labeling is to check whether the same location cluster persists across
multiple days. Among those users, 70 users’ home location and 60 users’ work location can
be manually identified.

The impact of Eps and MinPts: Before applying the geomasks, we first tested how the
choice of MinPts and Eps in DBSCAN would impact the effectiveness of identifying the
home clusters of those Twitter users. We chose the MinPts ranging from 4 points to the
square root of the total number of tweets in each period (nighttime or daytime), and the
search radius Eps in a range of 50m to 1000m with a step of 50m. As shown in Figure 3,
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Measures / Methods RM (H) GM (H) TAZ (H) RM (W) GM (W) TAZ (W)

Mean overall accuracy 0.742 0.459 0.867 0.661 0.729 0.880

Median overall accuracy 0.840 0.446 0.980 0.722 0.803 0.989

Mean balanced accuracy 0.686 0.500 0.852 0.551 0.500 0.917

Median balanced accuracy 0.667 0.500 0.980 0.500 0.500 0.991

Mean sensitivity (recall) 0.978 0.000 0.966 0.988 0.000 0.970

Median sensitivity (recall) 1.000 0.000 1.000 1.000 0.000 1.000

Mean specificity 0.704 1.000 0.898 0.705 1.000 0.865

Median specificity 0.819 1.000 0.973 0.800 1.000 0.982

Mean precision 0.789 N/A 0.951 0.627 N/A 0.849

Median precision 0.936 N/A 0.990 0.837 N/A 0.983

Mean F1-score 0.836 N/A 0.949 0.704 N/A 0.858

Median F1-score 0.954 N/A 0.991 0.898 N/A 0.987

Median shift to the medoid 42m N/A 403m 90m N/A 360m

Median shift to the centroid 737m N/A 485m 798m N/A 460m

Table 1: The geoprivacy effectiveness measures using different geomasking methods (Ran-
dom perturbation with 1km threshold and Gaussian perturbation with 0.05 SD; H: Home,
W: Work, GM: Gaussian Masking, RM: Random Masking, TAZ: Aggregation by traffic anal-
ysis zones, and N/A means results are not available).

we grouped the home cluster detection results based on the Eps, and each sub-boxplot rep-
resents the overall accuracy with varying MinPts in DBSCAN. Not surprisingly, the mean
and median of overall accuracy is over 0.836 and 0.970 and keeps high values (basically
over 0.8) regardless of the parameter choices. It also indicates the potential risk of location
exposures of those active users as their home location cluster can be easily identified even
without parameter calibration.

Comparing the effectiveness of different geomasking techniques: First, we explored the
impact of the random perturbation geomasking with different thresholds. Existing studies
have found that the choice of Eps=200m to 300m could generate good spatial clustering
results for urban areas of interest and human activity zones [20, 22, 33]. Therefore, we are
interested in whether the geomasking process could protect users’ home or work location
privacy within such a distance range. However, our experiments show that small-distance
(such as within 300m or even 1km) random perturbations don’t help the protection of users’
geoprivacy because their home location clusters can still be correctly identified with over
0.80 overall accuracy. Moreover, the mean of sensitivity (recall) for detecting home clusters
is 0.978 and the median is even higher to 1.0; the mean of precision for detecting home
clusters is 0.789 and the median is 0.936; and the mean of F1-score is 0.836 and the median
is 0.954. All these quality measures show that the users’ home locations are exposed to the
general public after random perturbation masking with a 1km distance threshold. Even
when the displacement threshold reaches 2km, the mean of overall accuracy using the ran-

JOSIS, Number 19 (2019), pp. 105–129



114 GAO ET AL.

(a) Random Perturbation (1km) (b) Random Perturbation (2km)

(c) Gaussian Masking (SD=0.01) (d) Gaussian Masking (SD=0.03)

(e) Gaussian Masking (SD=0.05) (f) TAZ-based aggregation (Madison)

Figure 4: The boxplot of overall accuracy of home cluster detection with different DBSCAN
parameters with random perturbation, Gaussian masking, and the TAZ-based aggregation.

dom perturbation mask is still over 0.70. The 2km random perturbation mask is effective
for protecting users’ home locations within the search radius of 200m, and only less than
0.5 of overall accuracy can be achieved for identifying the users’ home locations (in Figure
4). As for the displacement distance, as shown in Table 1, the median of shift distances
from the true home location to the centroid of home clustering results is about 737m and to
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(a) F1-score by Random Perturbation (1km) (b) F1-score by TAZ-based Aggregation

(c) Medoid Shift by Random Perturbation (1km) (d) Medoid Shift by TAZ-based Aggregation

(e) Centroid Shift by Random Perturbation (1km) (f) Centroid Shift by TAZ-based Aggregation

Figure 5: The boxplot of F1-score, medoid and centroid distance shifts of home cluster de-
tection with different DBSCAN parameters with random perturbation and the TAZ-based
aggregation.

the medoid is only about 42m. The median shift distance is a more stable measure rather
than the mean shift distance considering the outliers in spatially dispersed point patterns.
The boxplot of F1-score, the medoid distance shift and the centroid distance shift of home

JOSIS, Number 19 (2019), pp. 105–129



116 GAO ET AL.

cluster detection after random perturbation (1km) can be seen in Figure 5(a), Figure 5(c),
and Figure 5(e) respectively.

(a) Random Perturbation (1km) (b) Random Perturbation (2km)

(c) Gaussian Masking (SD=0.01) (d) Gaussian Masking (SD=0.03)

(e) Gaussian Masking (SD=0.05) (f) TAZ-based aggregation (Madison)

Figure 6: The boxplot of overall accuracy of work cluster detection with different DBSCAN
parameters with random perturbation, Gaussian masking, and the TAZ-based aggregation.

As for the Gaussian perturbation, we found that it is effective for protecting users’ home
locations with proper parameters. The mean of overall accuracy for identifying users’ home
clusters using two-dimensional Gaussian kernels with 0.05 standard deviation (SD) is less
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than 0.50 in average and the median is also less than 0.50 regardless of the DBSCAN param-
eter choices. And the Gaussian maskings with larger SD get more dispersed spatial point
patterns and have very low prediction accuracy for home location identification. However,
given the nature of sparse spatial distributions of digital footprints, the SD of geotagged
tweet distributions of a user is often large (about 5~10km), and so is the distance shift
from original points to displaced points after the Gaussian masking process. This is part of
the reason why we could not correctly identify the home location clusters after Gaussian
masking.

Results regarding geoprivacy protection of work locations during daytime (in Figure
6), differ from the home location case. The mean and median overall accuracy decreased
to 0.661 and 0.722 using the random perturbation (1km) approach. The reason might be
the diverse spatial patterns of human activity locations in daytime [33]. However, high
median sensitivity 1.000 and F1-score 0.898 demonstrate that high percentage of true work
location clusters can be successfully identified. The median of shift distances from the true
work location to the medoid of work clustering results increased to about 90m (and shift
to the centroid: 798m). The boxplot of F1-score, the medoid distance shift and the centroid
distance shift of work cluster detection after random perturbation (1km) can be seen in
Figure 7(a), Figure 7(c), and Figure 7(e) respectively. In addition, the overall prediction
accuracy of work location decreases as the Eps increases using the random perturbation
method. This is mainly because of the imbalanced work location data problem (i.e., the
number of exposed work locations is much fewer than the non-work locations during the
daytime) and the decrease of true negative predictions, which will be discussed later in
Section 5. To deal with the imbalanced data, the balanced accuracy is also reported to mea-
sure the accuracy of the clustering results. The mean and median of the balanced accuracy
are all 0.500, and in most cases the sensitivity is 0.000 and the specificity is 1.000, which
shows that, despite the high overall accuracy, no work clusters after Gaussian masking are
correctly identified. It is worth noting that the displacement of each tweet location might
vary in different operations of perturbation process. But the overall quality measures for
geoprivacy preservation in multiple operations did not change much (about 2% difference
in our experiment) and the overall accuracy measures reported are stable.

In addition, we also conducted the traditional aggregation-based masking analysis at
the traffic analysis zones (TAZs) in the three urban areas (as shown in Figure 8). As a
lot of human mobility and transportation studies using geotagged social media data are
based on the home-work trips at the TAZ level, such a scale meets the spatial resolution
requirement for urban transportation analysis. Also, we demonstrate here the aggregation
results on the Madison area (as shown in the TAZ(H) and TAZ(W) columns of Table 1),
since we are more familiar with Madison’s traffic conditions and urban spatial layout. Also,
unlike other users in Washington DC and Los Angeles, many of whom are tourists and thus
have a very wide range of activities (even nationwide), the Madison users are more locally
active and their tweet locations match Madison TAZ better, enabling more accurate and
representative aggregation analysis. The TAZ-based aggregation method, however, still
cannot protect the geoprivacy well of those active Twitter users given a high median overall
accuracy of identifying home cluster (0.980) and work cluster (0.989). The boxplot of overall
accuracy, F1-score, the medoid distance shift and the centroid distance shift of home cluster
detection after TAZ-based aggregation can be seen in Figure 4(f), Figure 5(b), Figure 5(d),
and Figure 5(f) respectively. Also, the same measures of work cluster detection can be seen
in Figure 6(f), Figure 7(b), Figure 7(d), and Figure 7(f). All the accuracy measures align well
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(a) F1-score by Random Perturbation (1km) (b) F1-score by TAZ-based Aggregation

(c) Medoid Shift by Random Perturbation (1km) (d) Medoid Shift by TAZ-based Aggregation

(e) Centroid Shift by Random Perturbation (1km) (f) Centroid Shift by TAZ-based Aggregation

Figure 7: The boxplot of F1-score, medoid and centroid distance shift of work cluster de-
tection with different DBSCAN parameters with random perturbation and the TAZ-based
aggregation.

regardless of the setting for DBSCAN search radius Eps and confirm the ineffectiveness
of geoprivacy preservation at the TAZ level using aggregation. It is worth noting that
the “ineffectiveness” is in a sense for the protection of home cluster identity rather than
the actual home location as there is still a possible distance shift between the true home
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(a) Los Angeles (b) Madison

(c) Washington DC

Figure 8: Traffic Analysis Zones (TAZs) of the three cities in this research.

location and the centroid of a TAZ polygon. From this perspective, it might be effective
for protecting the true home (work) location, but the distance shift really depends on the
spatial distribution of a home (work) location within the TAZs (i.e., the proximity to the
TAZ center). The results show that the median of shift distances from the true home (work)
location to the centroid of home (work) TAZ is about 485m (work: 460m) and to the medoid
is about 403m (work: 360m).
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5 Discussion

5.1 Imbalanced data and geomasking performance

As shown in the results, the geomasking effectiveness differs largely on home locations
and work locations due to their different spatiotemporal patterns. During the nighttime,
the users often stay at home, and thus most of their nighttime tweet locations can represent
their home locations. However, during the daytime, the users have more diverse activ-
ity space and do not necessarily stay at their work locations all the time. Thus there are
many non-work tweets that are posted at other places, which results in an imbalanced data
problem between work locations and non-work locations. The number of home locations
(6,700) and non-home locations (6,053) during the nighttime is almost equal (about 1:1),
which is more balanced and explains why the overall accuracy is still able to reach around
0.50 but with 0.0 recall rate after the Gaussian masking. However, the number of work
locations (3,168) and non-work locations (8,904) during the daytime differs substantially
(about 1:3), and the number of true negative predictions is therefore large enough so that
the overall accuracy could be around 80% even when no true work location cluster is cor-
rectly detected. As the Eps (the search radius threshold for the DBSCAN cluster algorithm)
increases, however, more true negative predictions become false positive predictions, re-
sulting in a decreasing overall accuracy.

In this regard, focusing only on the overall accuracy alone is meaningless, and we need
to take both the precision and recall into account to evaluate the geomasking performance.
Therefore, we further computed and drew the Precision-Recall curves (PR-curves) for dif-
ferent geomasking methods based on different Eps (from 50m to 1000m) in Figure 9. The
PR-curve is a comprehensive tool to measure the model performance even on imbalanced
data since it takes both the precision and recall into consideration at the same time. Each
curve represents the performance of a geomasking method. The higher the curve stays
when moving from left to right, the higher precision the home (work) cluster detection
algorithm gets, and therefore the worse the geomasking method performs. As shown in
Figure 9, for both home locations and work locations, the random perturbation methods
(both 1km and 2km) and TAZ-based aggregation methods have higher overall precisions
and recalls, whereas the Gaussian masking methods (SD=0.01 and 0.03) are able to suppress
both the precision and recall at the same time. Note that the Gaussian masking method with
0.05 SD doesn’t appear in the Figure since it protects the geoprivacy well and thus there is
no precision or recall rates for drawing its PR curve. As such, with proper parameter set-
tings, the Gaussian geomasking method could have a better effectiveness for protecting the
location privacy of Twitter users than the random perturbation method and the TAZ-based
aggregation method.

In addition, we also explored the differences between the settings of distance threshold
(for random perturbation) and the standard deviations (for Gaussian geomasking) as well
as their influences on the geomasking performance. As shown in the violin plot (Figure
10), the values of distance shifts of tweet locations (daytime and nighttime) after random
perturbation are evenly distributed within the distance threshold, while after the Gaus-
sian geomasking, the distribution of distance shifts is much closer to a normal distribution
with a wider range. For the random perturbation (2km) and the Gaussian geomasking
(SD=0.01), although they have a similar average distance shift (about 1081m and 1211m re-
spectively), the latter still has a significantly better performance due to its high uncertainty
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(a) Home cluster

(b) Work cluster

Figure 9: Precision-Recall curves of different geomasking methods.

level by comparing their PR-curves in Figure 9. It shows that the perturbation that follows
a normal distribution would have a larger but more natural influence on the geotagged
tweet locations than the random perturbation, and we believe this partially explains why
the Gaussian masking method with proper standard deviation settings could have a better
performance than the random perturbation method.
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Figure 10: The violin plot of distance shifts of tweet locations after geomasking.

5.2 Implications among privacy, analytics, and uncertainty

The results in our experiment demonstrate that one geomasking method could effectively
protect users’ geoprivacy but may reduce the spatial analysis capability and introduce un-
certainty to further analytics. Inspired by several theoretical frameworks in geovisualiza-
tion and geospatial semantics studies [25, 36], we herein present a three-dimensional visu-
alization framework (as shown in Figure 11) including privacy, analytics, and uncertainty
as a tool to evaluate and inform the selection of appropriate geomasking methods under
different contexts. The first dimension is about the capability to protect users’ geoprivacy
from low to high. The second dimension is the spatial resolution of geospatial analytics
from coarse to fine. And the third dimension is uncertainty level from low to high [21].
Two presented geomasking methods (Gaussian and random perturbations) with different
parameter settings and the TAZ-based aggregation method in our experiments using geo-
tagged tweets are tentatively placed in this 3D cube. It is worth noting that the placement
of each method is estimated from the results of our case study shown in Table 1 (e.g., based
on the accuracy measures and the distance shifts). We think that such a 3D cube visu-
alization can serve as an assessment tool for evaluating other geomasking methods from
the three aspects simultaneously as well. For instance, one may add the donut masking,
Voronoi masking, and other geomasking techniques into this framework with a different
application domain (e.g., public health). While we mainly focus on the privacy preserva-
tion aspect in this research, the exploration of other two dimensions (i.e., spatial analytics
and uncertainty) requires more investigation in future work.

5.3 Limitations

Several limitations exist in our current study. First, our manual labeling approach has un-
certainty about users’ actual home or work locations without their interview confirmation.
Thus, it is possible that the labeling results may not be able to reveal the ground truth of
all the actual home or work locations of those Twitter users. However, we try our best to
ensure the quality of the labels using a set of comprehensive rules mentioned in Section 4.
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Figure 11: A 3D-cube framework for assessing different geomasking techniques; the posi-
tion of each method is estimated from the results of our case study.

Second, such an approach is also limited on the sample size since it needs labor-intensive
labeling process. Even within the same study group, we agree on most of the manual labels
but individual differences do exist towards the concordance of labeled training data. Third,
the location cluster detection results depend heavily on the number of tweets of a user, and
their particular tweeting behavior. If a user posts a large number of tweets from home (or
work location) then it is easier to identify his/her home (or work location) compared to the
users who tweet rarely. Last but not least, the presented home (work)-detection method
only relies on the DBSCAN spatial clustering for geotagged tweets. Other approaches such
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as the detection of home-work locations using recurring trips also exist. The coordinate in-
formation may not be as important as the spatial interaction frequency among those points
using the trip-based detection approaches.

5.4 Broader impacts

In fact, Twitter removed support for precise geotagging since June, 2019. However, the
metadata of historical tweets prior to the policy change may still reveal precise GPS coor-
dinates. In addition, when a user deletes a geotagged tweet2, Twitter does not guarantee
the information will be completely removed from all copies of the data on third-party ap-
plications or in external search results. Even if the precise GPS location is not available
anymore, Twitter users are still able to add place tags (e.g., a city, office building, apart-
ment, landmark, and many other types of places) to their geotagged tweets, which can be
converted to the GPS coordinates (often using the centroid as a representation location).
This is similar to the aforementioned aggregation-based masking approach, thus we may
still be able to get users’ sensitive locations based on fine-scale place tags. People should be
aware that sharing or publishing such kind of location data involve geoprivacy issues and
the geomasking technique provides a way to help mitigate the problem not only for Twitter
users but also for other social media platforms such as Facebook, Flickr, Weibo, and Insta-
gram where geotagging or place-tagging is accessible, as well as for mobile applications
that track individual locations.

6 Conclusions and future work

In this work, we have explored the effectiveness of three popular geomasking techniques
for protecting the geoprivacy of active Twitter users who frequently share geotagged tweets
in their home or work locations. Based on our experiments, the two-dimensional Gaussian
masking with proper standard deviation settings is found to be more effective on hiding
or shifting social media user’s home location than the random perturbation and the aggre-
gation masks. However, the Gaussian masking may also lower the spatial resolution of
geospatial analytics given the sparsity nature in geotagged social media data. Our experi-
ments show that small-distance (such as within 1km or 2km) random perturbations do not
sufficiently help the protection of users’ geoprivacy because the majority of their home or
work locations can still be correctly identified with high accuracy and very small median
shift distance from the ground-truth locations. Our research offers insights into the geopri-
vacy concern of social media users’ georeferenced data sharing for future development of
location-based applications and services.

For future work, one direction would be what is the impact of these geoprivacy en-
hancements on the user experience comparing with simply removing the benefit to the
user of posting geotagged tweets. Another direction is about the protection of geoprivacy
using the spatiotemporal information and among other activity place types (e.g., shopping,
entertainment) of social media users. In addition, we would like to extend our workflow
to other cities to test whether our conclusion drawn from our case study is generalizable.
Although Twitter decided to remove the precise location coordinate of each tweet while
keeping the place tagging function, a precise location is very critical in some application

2https://help.twitter.com/en/using-twitter/tweet-location

www.josis.org

https://help.twitter.com/en/using-twitter/tweet-location
http://www.josis.org


GEOPRIVACY OF TWITTER USERS 125

scenarios such as disaster response and crime investigation. The trade-off between the re-
quirement of spatial analysis resolution and the privacy preservation capability requires
more research on different scenarios.
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