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A B S T R A C T   

Understanding house price appreciation benefits place-based decision makings and real estate market analyses. 
Although large amounts of interests have been paid in the house price modeling, limited work has focused on 
evaluating the price appreciation rate. In this study, we propose a data-fusion framework to examine how well 
house price appreciation potentials can be predicted by combining multiple data sources. We used data sets 
including house structural attributes, house photos, locational amenities, street view images, transportation 
accessibility, visitor patterns, and socioeconomic attributes of neighborhoods to enrich our understanding of the 
real estate appreciation and its predictive modeling. As a case study, we investigate more than 20,000 houses in 
the Greater Boston Area, and discuss the spatial dependency of house price appreciations, influential variables 
and their relationships. In detail, we extract deep features from street view images and house photos using a deep 
learning model, merging features from multi-source data and modeling house price appreciation using machine 
learning models and the geographically weighted regression at two spatial scales: fine-scale point level and 
aggregated neighborhood level. Results show that the house price appreciation rate can be modeled with high 
accuracy using the proposed framework (R2 = 0.74 for gradient boosting machine at neighborhood-scale). We 
discovered that houses with low house prices and small house areas may have a higher house appreciation 
potential. Our results provide insights into how multi-source big geo-data can be employed in machine learning 
frameworks to characterize real estate price trends and help understand human settlements for policy-making.   

1. Introduction 

As an important aspect of human settlement, house prices are strongly 
associated with economic activities (Chen et al., 2016). Understanding the 
trends in house prices can provide suggestions not only for house buyers 
but also for researchers and decision makers in real estate market, urban 
planning and development. For decades, researchers from economy, urban 
planning, geography, politics and computer science have made great ef
forts in house price-related topics to understand the impacts of property 
values in different socioeconomic environments (Archer et al., 1996; Cao 
et al., 2019; Fu et al., 2016; Hu et al., 2019). 

Despite large amounts of existing studies, two aspects received 
insufficient attention. First, most existing literature focuses on the house 
price modeling but neglects the study of price appreciation rate (Hung 
and Tu, 2008; Livy, 2017). Compared with absolute values of house 

prices, which are only snapshots of the property values in a specific time 
window, house price appreciation rates can reflect the growth or decay 
of property values from a long-term perspective. In addition, high house 
price does not equal to a high house price appreciation rate. A same 
variable may have totally different impacts on house prices and on 
appreciation rates. Therefore, examining the effect of different variables 
on house price appreciation is important and promising. 

Second, existing models such as the hedonic pricing model proposed by 
Rosen (1974) typically only take structural attributes and locational 
amenities into consideration, which may not describe the other aspects of 
factors influencing the house price appreciation rate comprehensively. 
In practice, structural attributes contain the tangible assets of the 
property, including the size of the house, the year built, the number of 
the bedrooms and bathrooms, etc., which can describe the inner char
acteristics of the houses (Can, 1992). Locational amenities refer to 
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geographical-related variables, such as the distance to the nearest fa
cilities, which can reflect the intangible environment nearby (Chau and 
Chin, 2003). However, the house price appreciation rate might be 
affected by other variables such as the physical appearance of the house, 
surrounding physical and social environment settings, and dynamic 
human mobility patterns (Du et al., 2018). For example, houses with 
exquisite decoration worth higher values by intuition; houses located in 
districts and areas with a beautiful visual aesthetic environment, where 
residents’ physical and mental health can be benefited, might have 
higher appreciation rate; and regions that can attract more visitors may 
have higher business values. However, due to the lack of quantitative 
measurements in conventional data collection methods, these key fac
tors were overlooked by most of the previous studies. 

The emergence of big data, high-performance computing, and 
advanced machine learning methods provide unprecedented opportunities 
to model those intangible assets of houses, which can enhance the esti
mation of house price appreciation rates. On one hand, in contrast to 
previous studies which used official statistical data and manual surveys in 
exploration of house price appreciation rates (Andrew and Meen, 2003; 
Crone and Voith, 1992; Archer et al., 1996; Quercia et al., 2000), larger 
volumes, velocities, varieties and veracities of geo-referenced data actively 
and passively produced by users bring more comprehensive insights into 
depicting socioeconomic environments in the era of volunteered 
geographic information (VGI) (Goodchild, 2007) and big geo-data (Gao 
et al., 2017b). For instance, house photographs that reflect indoor and 
outdoor scenery of properties, taken from the house owners and seller 
agents, are uploaded to online websites, which enable people to under
stand the scenery of houses; and street view images can describe the re
lationships between urban physical attributes and socioeconomic 
environments (Gebru et al., 2017; Zhang et al., 2018b; Zhang and Dong, 
2018; Liu et al., 2019b). These two data sources make it possible to 
characterize the living environment from a human’s perspective. 
Furthermore, the wide spread of GPS-embedded devices (e.g., mobile 
phones and vehicles), makes it possible to track individuals’ trajectories to 
infer people’s activities and movements. These dynamic observations of 
human movements may be taken as supplementary for locational ame
nities which only characterize the static geospatial aspects of houses. 
Intuitively, houses located in the areas with high accessibility to other 
places and higher attractiveness of others, may have higher price appre
ciation rate because of the travel convenience. A better understanding of 
the relationship between all these dimensions and house price appreciation 
rates can provide more comprehensive and valuable information for policy 
making to improve the overall quality of neighborhoods and stimulate 
social and economic balances between urban areas. 

On the other hand, the development of state-of-the-art computer 
vision techniques enables us to extract high-level visual features from 
urban images. Capturing visual features to represent the scenic charac
teristics of houses as well as their neighborhood settings might help 
measure real estate appreciation values. In fact, recent works have 
shown the great potential of visual information in estimating house 
prices and in exploring culture and socioeconomic characteristics of 
neighborhoods (Gebru et al., 2017; You et al., 2017; Yao et al., 2018; 
Law et al., 2018; Fu et al., 2019; Liu et al., 2019a; Chen et al., 2020; 
Zhang et al., 2020). Accordingly, modeling house price appreciation rate 
with visual information is promising. 

In this work, we propose a comprehensive multi-feature-fusion 
framework using machine learning to model the house price apprecia
tion rate. To build the framework, multiple data sources, including 
house information, built environment, human mobility patterns, and 
socioeconomic attributes of neighborhoods, are used to understand the 
value of urban settlements comprehensively. We take the Greater Boston 
Area as an example to test the feasibility of the proposed framework, and 
explore factors impacting on house price appreciation rates. 

2. Framework 

2.1. Overview 

The framework is composed of four stages, namely data collection, 
feature construction, model training, and mapping and analysis (Fig. 1). 
First, we collect multi-source datasets, including the house information, 
built environment features, human mobility patterns, and socioeco
nomic attributes of neighborhoods on a cloud server. Second, by fusing 
the above datasets, we extract a series of features that are assumed to 
have an impact on price appreciation rates and use a multi-dimensional 
vector for representation. Then, algorithms including machine learning 
and geographically weighted regression (GWR) are built using the fea
tures constructed. The metrics are defined to measure the performance 
of those algorithms as well. Specifically, two spatial units (points and 
neighborhood) are tested in this research with different combinations of 
approaches. Finally, we aim to not only explore better ways for pre
dicting house price appreciation rates, but also interpret the potential 
variables that are associated with the values of real estate appreciation. 

2.2. Data collection 

Four different categories of data are used in this study, namely house 
information, built environment, human mobility patterns, and socio
economic attributes of the neighborhoods. 

2.2.1. House information 
House information consists of two subcategories: structural attri

butes and house photos. Both of them are collected from a popular on
line real estate website—REDFIN website.1 House owners and seller 
agents post the information of their properties to the website for sale 
with an estimated price of each house provided by the system. 

Structural attributes describe the basic characteristics of the house, 
including the location of the property, the number of bathrooms and 
bedrooms of the house, the built year, the number of floors and the size 
of the property, and the house type (single family residential, town
house, etc.), which have been widely used in traditional hedonic pricing 
models (Rosen, 1974; Chau and Chin, 2003). Since our main focus is to 
predict the house price appreciation rates (i.e., price changes), the house 
prices across a five year period from February 2014 to February 2019, 
are retrieved. Accordingly, the appreciation rate R of a house with 
market price P is defined as follows: 

R =
P2019 − P2014

P2014
(1) 

House photos are downloaded from the REDFIN website as another 
important part of the house information (Fig. 2). For each property, 
sellers upload photos taken by themselves to show the interior and 
exterior appearance of the house. Because the number of photos shared 
by sellers varies and not all properties have house photos available, we 
discarded those houses without photos. After that, the remaining houses 
with available photos are stored in order to extract meaningful high- 
level visual features to describe the house scenery. 

2.2.2. Built environment 
Two datasets are used to depict the built environment of a house: 

locational amenities and street view images. 
Typically, locational amenities refer to the facilities near the house in 

the hedonic pricing model. Here, we use the point of interest (POI) in
formation to show the location characteristics of nearby properties. The 
SafeGraph POI data2 is used to provide the location information. Besides 
the location coordinates, each POI has a specific category code, which 

1 https://www.redfin.com/.  
2 https://www.safegraph.com/. 
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Fig. 1. The workflow of this study: (A) Data collection. (B) Feature construction. (C) Model training. (D) Mapping and analysis.  

Fig. 2. Left: Study area. Red dots indicate the location of houses and blue polygons represent the boundary of census block groups. Middle: Examples of street view 
images. © 2019 Google. Right: Examples of house photos. © 2019 Redfin. 
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follows the standard criteria proposed by the North American Industry 
Classification System (NAICS).3 In reference to the existing research 
(Cao et al., 2019), the following categories of POIs are chosen as illus
trated in Table 1. 

Street view images are downloaded by utilizing the Google Street 
View API4 (Fig. 2). Street view images have been widely used to describe 
the physical settings of urban environment and neighborhoods, which 
can infer the relationship between human society activities and physical 
environment (Gebru et al., 2017; Zhang et al., 2018a; Chen et al., 2020). 
In order to retrieve the street view data along the roads, road networks 
are downloaded from the OpenStreetMap.5 A set of geo-referenced 
sampling points are generated along the roads with a fixed distance 
interval of 100 m. For each point, eight street view images are analyzed 
from different angles to show the surrounding urban environment 
comprehensively. It should be noted that not all street view images 
collected are used. Only those images within 50 m of each house are 
retrieved as descriptors to model the visual scenery of the housing built 
environment. 

2.2.3. Human mobility patterns 
There are two datasets used in this research to reflect the dynamic 

human mobility patterns: visitor patterns and transportation accessi
bility. Both are aggregated at the spatial resolution of Census Block 
Groups (CBGs). 

The visitor patterns of CBGs are retrieved from the SafeGraph mobile 
phone database which covers about 10% of total population with mobile 
devices in the United States.6 SafeGraph aggregates anonymized loca
tion data from numerous mobile applications in order to provide insights 
about physical places. To enhance privacy, SafeGraph excludes CBG 
information if fewer than five devices visited an establishment in a 
month from a given census block group. For each CBG, the records of 
aggregated visitor patterns illustrate how many visitors to the CBG 
during a specified time window, which could reflect the attractiveness of 
the CBG. The hourly visit counts are recorded as a 24-dimensional vector 
to show the dynamic patterns of visitors at CBGs. 

The other dataset is released by the Uber Movement project.7 This 
publicly available open data platform provides the observed travel times 
between two CBGs based on the movements of Uber vehicles. We 
calculate the mean travel time of each CBG to all other CBGs in the 
whole year of 2018. Note that the mean travel time may vary among 
CBGs, so the standard deviation of the travel time is also computed. 

2.2.4. Socioeconomic attributes of neighborhoods 
We used the CBG data released from the American Community 

Survey (ACS), which contains all kinds of demographic data. It is widely 
used in socioeconomic studies to estimate the neighborhood social 
identities at the CBG level. Specifically, we retrieved the population, 
ethnicity, income, and unemployment rate of the CBGs. Population of 
seven ethnicity groups as well as their ratio of each ethnicity are 
recorded in each CBG. For each CBG, both the population and the ratio 
of each ethnicity are computed. In addition, the average income and 
average unemployment rate, which could reflect the identity and class of 
the neighborhood are also retrieved for further analysis. 

2.3. Feature construction 

Assume that each house appreciation rate ri is influenced by a set of 
features from four perspectives: ri = F(hi,bi,mi, si), in which hi refers to 
house information, bi refers to built environment, mi refers to human 
mobility patterns, and si refers to socioeconomic attributes. In order to 
integrate these four types of factors to predict the house price appreci
ation rate, a set of features are extracted and constructed following the 
steps below. 

2.3.1. General features 
Structural attributes are constructed as features from the data source 

and attached to each house directly. It is worth noting that we use the 
natural logarithm of house price, which is normally distributed rather 
than the original values as they distributed skewed. Features of human 
mobility patterns and socioeconomic attributes of the neighborhood are 
attached to the houses after the spatial join operation between house 
locations and CBG polygons. 

2.3.2. Locational features 
For locational amenities, to better characterize the living conve

nience of neighborhoods thoroughly, we construct features from two 
aspects: the distance from the house to the nearest facilities, and the 
number of nearby amenities. The assumption is that different facilities 
may have different urban functions, which result in different mobility 
patterns of people and neighborhood vibrancy (Liu et al., 2012; Gao 
et al., 2017a; Yue et al., 2017). For example, people usually prefer to go 
to the nearest transportation hubs including metro and bus stops instead 
of farther away options. Thus, the distance to the nearest facility matters 
while the number of these transportation stations nearby may have 
limited impacts on people’s travel mode. However, for amenities such as 
shops and restaurants, their quantity and variety of offerings influence 
the convenience to people living in a certain area. Therefore, we 
calculate the total number of these types of POIs. As suggested by studies 
from urban planning and geography (Neilson and Fowler, 1972; Murray 
and Wu, 2003), we select 600 m as the distance threshold for our dis
tance analysis, which is suitable to represent the preferred coverage of 
human physical activity by walking, and is used to evaluate the walk
ability of the neighborhood convenience (Ellis et al., 2016). In other 
words, POIs in each category within 600m of house properties would be 
counted as the descriptors of a house. 

2.3.3. Visual features 
Furthermore, we extract deep features of street view imagery and 

house photos using a deep convolutional neural network (DCNN). The 
model is adapted from ResNet18, a commonly used architecture that has 
been proved efficiency in various computer vision tasks (He et al., 
2016). It can extract high-dimensional visual features which can reveal 
hidden scenery information captured in photos. In order to learn effi
cient visual features from the images, we train the model with a house 
price prediction task. Accordingly, we take the images as model inputs 
and the house price value as the output. To deal with the skewed dis
tribution (power law) of the house prices and accelerate the training 
process, we discretize the house price values into 10 levels and 

Table 1 
POI categories with NAICS code.  

NAICS code Categories 

445110 Grocery Store 
452319 Stores 
611110 School 
611310 Universities 
622110 Hospital 
712190 Nature Parks 
713110 Amusement Parks 
722511 Full-Service Restaurants 
722513 Limited-Service Restaurants 
722515 Snack and Nonalcoholic Beverage Bars  

3 https://www.naics.com.  
4 https://developers.google.com/maps/documentation/streetview/intro.  
5 https://www.openstreetmap.org/.  
6 https://www.safegraph.com/blog/what-about-bias-in-the-safegraph-dat 

aset.  
7 https://movement.uber.com/?lang=en-US. 
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formulate the training as a 10-category classification task. A similar 
strategy was adopted in Zhang et al. (2019). The pre-trained model is 
then used to extract 512-dimensional features from each image, which is 
considered as an efficient visual representation of the indoor/outdoor 
scene depicted in the image. Here, we only take the Greater Boston Area 
as a case study. The framework is also expected to be employed in other 
cities. With such a high-dimensional feature representation, the scenery 
of all collected photos can be represented comprehensively. We conduct 
the training process for house photos and street view images separately. 
Given the training process of the high-dimensional features (especially 
for the images) is time-consuming. Therefore, we adopt the principle 
component analysis (PCA) to reduce the feature dimension while pre
serving major feature characteristics. For each image, the first twenty 
components with about 60% of the total explained variance are main
tained as the image feature. Please note that the major feature charac
teristics remained may vary across cities due to different urban 
environments and spatial dependency place by place. The first 20 
components selected here can represent the visual scenery of built 
environment specifically in the Greater Boston Area only. Finally, we 
average the image features from multiple images associated with the 
same house (for both house photos and street view images). 

2.4. Modeling algorithms 

Two spatial analysis units are used in the experiment: fine-scale point 
level and aggregated neighborhood level. We assume that there are two 
kinds of target purposes using the proposed framework given the de
mand difference from two different groups. For house buyers and real 
estate industry, good machine learning models for individual house 
prices is more informative because of the high accuracy for appreciation 
estimation. The higher the model accuracy, the higher users’ satisfaction 
is. Therefore, a fine-scale prediction of house value appreciation with 
advanced machine learning models is essential (Law et al., 2018; Hu 
et al., 2019). In comparison, economists, geographers, and policy 
makers are more interested in analyzing the macroscopical trend of 
house prices, and discuss the hidden economic and geographic factors 
influencing house price appreciation. The accuracy of results is not the 
only metric to consider when choosing the best model, while a macro
scopic perspective of the real estate appreciation rate may be more 
helpful. The efficacy of geographically weighted regression (GWR) that 
could explain the spatial heterogeneity of variables in regression has 
been demonstrated in house price modeling (Cao et al., 2019; Wu et al., 
2019; Liu et al., 2020). Therefore, spatially explicit models such as the 
GWR at the neighborhood-scale are favored. 

2.4.1. Fine-scale level 
At the fine-scale point level, all properties are treated equally with 

the entire set of the abovementioned features. We compare the multiple 
linear regression (MLR) approach with one machine learning 
approach—gradient boosting machine (GBM) with decision trees 
(Friedman, 2001)—to test the efficiency of the proposed framework. 
Although there are various machine learning methods, we only use the 
GBM as a representative machine learning model to make comparison 
with the linear regression model according to the following reasons: The 
accuracy and efficiency of GBM have been proved in various prediction 
tasks (Natekin and Knoll, 2013); And the main focus in this paper is to 
explore whether those extended data features can provide useful infor
mation for house price appreciation rate prediction, while not focusing 
on which machine learning algorithm performs the best. We conduct the 
k-fold cross-validations which split data into two parts: one is the 
training dataset and the other is the testing dataset, to mitigate over
fitting problem in model training and prediction. The importance of 
each variable for GBM is also recorded to provide helpful suggestions for 
decision makings. 

2.4.2. Neighborhood level 
As for the neighborhood level (Fig. 3), the average values of all 

features for properties in one specific CBG are calculated as the feature 
set for the CBG. Ordinary least squares regression (OLS) and 
geographically weighted regression (GWR) are used to estimate the 
variables that influence house price appreciation rate. Compared with 
global regression model which ignores spatial non-stationary and only 
illustrates global impacts of variables, the GWR model constructs spatial 
relationships between independent and dependent variables with the 
following equation (Fotheringham et al., 2003): 

Ri = α0(ui ,vi) +
∑m

k=1
ak(ui ,vi)Xk(ui ,vi) + εi (2)  

where Ri refers to the house price appreciation rate at location i, and the 
coordinate is (ui,vi); α0(ui ,vi) refers to the intercept parameter at location i; 
ak(ui ,vi) refers to the local regression coefficient for the kth independent 
variable at location i; Xk(ui ,vi) refers to the kth attribute of location i; and 
εi indicates the random error. By using this model, the derived co
efficients may vary across the research area and show the spatial het
erogeneity of impact factors. 

The main assumption in our study is that by embedding new data 
sources, including house photos, street view images, human mobility 
data and socioeconomic data, a model with better performance could be 
built. We expect such a model can achieve higher accuracy and provide 
better explanations of the reasons for house price appreciation values. 
Therefore, the traditional hedonic model (Rosen, 1974) fed with struc
tural attributes and locational amenities only is considered as the 
baseline. New models fed with extended data sources are added 
respectively. Finally, a hybrid model using all data sources is also tested. 

2.5. Evaluation 

Two metrics are used for the evaluation of model performance, 
namely, the root mean square error (RMSE) and the coefficient of 
determination R2. The RMSE is calculated as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(r0i − ri)

2

√
√
√
√ (3)  

where r0i is the actual house appreciation rate and ri is the predicted 
price appreciation rate of a house i. And the R2 is calculated as follows: 

R2 =
1
m
∗
∑m

i=1

(ri − r) ∗ (r0i − r0)

ρr ∗ ρr0
(4)  

where r and r0 refer to the average values of the predicted and the 
observed house price appreciation rates, and ρr and ρr0 are the standard 
deviations of the predicted and the observed house price appreciation 
rate respectively. 

3. Experiment and results 

We take the Greater Boston Area as the study area. As shown in 
Fig. 2, the red dots represent houses (fine-scale) and the blue polygons 
are the CBGs (neighborhood-level). In this study, there are 21,928 
houses with 125,000 house photos and about 470,000 street view im
ages in total. All the house-related datasets are spatially aggregated into 
the 867 CBGs based on their point-in-polygon relationship (Fig. 3). 

We train the machine learning models with multi-sources of data. 
The RMSE and R2 with k-fold cross-validations are calculated to evaluate 
the model performance between the predicted and the actual value of 
house price appreciation rate. We conduct the experiments at the fine- 
scale and at the neighborhood-scale respectively. 
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3.1. Fine-scale house price appreciation estimation 

At the fine-scale, we take each house as the basic unit, and conduct 
five experiments with different combinations of explanatory variables. 
The baseline experiment only takes house attributes and locational 
amenities as the explanatory variables. Then, four additional experi
ments are conducted with house photos, street view images, human 
mobility patterns, and socioeconomic factors by feeding these features 
into each model step-by-step. Finally, we train the model using all 
variables. 

Fig. 4 shows the scatter plots between the observed and the predicted 
house price appreciation rate. Table 2 illustrates the RMSE for all 
models. In general, the machine learning model using GBM (R2 = 0.74;
RMSE = 0.077) outperforms the MLR (R2 = 0.48;RMSE = 0.103). This 
is expected, as the relationships between house price appreciation rate 
and features are not linear and the decision tree-based machine learning 
approach can better model non-linear relationships among variables. 
Results also show that combining multiple data sources indeed improves 

the performance of the models. In particular, the models that incorpo
rate street view images got the lowest RMSE and improved the R2 to a 
large extent. Most importantly, the model incorporating all the variables 
achieved the best performance. It proves that the four groups of vari
ables characterize the appreciation value of a house from different 
perspectives and contribute differently to the variation of the house 

Fig. 3. Data distributions at census block group (CBG) level: (A) average house appreciation rates. (B) The natural logarithm of house prices. (C) Average house price 
per square meter. (D) Number of visitors to each CBG. (E) Averaged travel mean time to other CBGs. (F) Population. 

Fig. 4. Model performance with R2 in different combinations of data sources using multiple linear model (MLR) and gradient boosting machine (GBM) at fine-scale 
point level. 

Table 2 
Model performance with RMSE in different combinations of data aspects using 
multiple linear regression (MLR) and gradient boosting machine (GBM) at fine- 
scale point level.  

RMSE MLR GBM 

Baseline 0.111 0.082 
Baseline + house photos 0.110 0.081 
Baseline + street view 0.106 0.079 
Baseline + mobility data 0.107 0.080 
Baseline + socioeconomic 0.109 0.080 
All data sources 0.103 0.077  
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price appreciation rates. 
Moreover, we ask which variables contribute most to modeling the 

house price appreciation rate. The variable importance is calculated by 
the GBM. Fig. 5 ranks the top 20 variables of the model. In addition, we 
calculated the correlation coefficients between these variables and the 
house price appreciation rate to explore how these factors influencing 
house price appreciation rate. Fig. 6 shows the Pearson correlation co
efficients of several selected variables with p-values less than 0.01, 
which means that they are statistically significant. 

The results show that the logarithm house price is the most important 
variable among all models with a correlation coefficient of − 0.55, 
indicating that within the last five years, low-cost houses had a higher 
price appreciation in the Great Boston Area. The type of houses such as 
townhouse, single family house, etc., and the house area (with absolute 
correlation coefficient 0.49), also have great impacts on house price 
appreciation. It illustrates that structural attributes can influence not 
only house prices, as illustrated in the traditional hedonic pricing model, 
but also the house price appreciation rate. Moreover, we noticed that the 
street view image feature is one of the most important variables for all 
the models. Among them, the average values of the third component of 
visual features (represented as StreetView PC3 AVG), which has great 
contributions to the scenery captured by street view images, has mod
erate influence on house price appreciation rate with negative correla
tion at -0.30. In addition, the impacts of the ninth, fifth, seventh, first 
and thirteenth components of visual features also ranked in the top 20 
among all variables. Though it is hard to explain the specific meaning of 
these visual features, it indeed indicates that high-level visual features 
could capture parts of important perspectives that are related to real 
estate appreciation rate. The results support our hypothesis that the 
detailed visual information of the house surrounding environment plays 
an important role in real estate appreciation evaluation as the street 
view images contain the overall environment of a neighborhood (Li 
et al., 2015; Gebru et al., 2017). Besides, for locational amenities, a 
house that is closer to a school ( − 0.13), amusement park ( − 0.21), 
metro station ( − 0.19), hospital ( − 0.09), or surrounded by more res
taurants (0.01), may have a higher price appreciation rate. Similarly, the 
mean travel time that reflects the transportation convenience of a 
neighborhood is negatively correlated with house price appreciation 
rate, which means the less the mean travel time to other regions, the 

higher the appreciation rate. Interestingly, the study corroborates what 
is widely discussed in real estate studies: proximity to amenities matters, 
proximity to transportation hubs matters, shorter travel time matters, 
and physical quality of the surroundings matters. 

3.2. Neighborhood-scale house price appreciation estimation 

The relationship between the independent variables and the house 
price appreciation rate may vary over space due to the spatially non- 
stationarity (Fotheringham et al., 2003). To investigate how spatial re
lationships change across the research area, we employed the 
geographically weighted regression (GWR) at the neighborhood-scale 
and compared the results with global multiple linear regression (MLR). 

Fig. 7 shows the performance of the two models with data from 
various sources. Similar to the results at the fine-scale, the GWR achieves 
a better performance (R2 = 0.774) than the MLR (R2 = 0.608), which 
confirms the spatial heterogeneity of the study phenomenon over the 
research area. 

Fig. 8 (A) shows that the coefficient of determination (R2) of the 
GWR model is generally consistent across the study area. However, in 
the Boston downtown area, the R2 is a little bit lower than the sur
rounding area (about 0.70 vs. 0.78). This indicates downtown area to be 
a more complex region which requires more latent factors that deter
mine house appreciation rates. Fig. 7(B)–(F) depict several selected 
correlation coefficient distributions over the study area. Results show 
that the logarithm house price (changes from − 0.30 to about − 0.55) 
and the distance to metro (changes from − 0.05 to about − 0.25) have 
weak to moderate negative effects on the appreciation rate of house 
prices and such a relationship change spatially. In contrast, the effect of 
mean travel time (vary from about − 0.05 to 0.125), distance to hospital 
(vary from about − 0.12 to 0.04), and distance to university varied (vary 
from about − 0.05 to 0.125) from negatively to positively across the 
study area. For instance, in the southeast region, the closer to a hospital, 
the lower the house appreciation rate (positive correlation of about 
0.04). Whereas for other regions, a house price appreciation rate in
crease is associated with a decrease in the distance to hospital (negative 
coefficient of about − 0.12). Results of the GWR model indicate that 
house price appreciation rates in Boston have spatial heterogeneous 
patterns. In other words, the coefficients of each variable and their 

Fig. 5. Importance of top 20 variables using GBM with all data sources.  
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Fig. 6. Correlation coefficients of variables selected at fine-scale point level.  

Fig. 7. Model performance with R2 in different combinations of data sources using multiple linear regression (MLR) and geographically weighted regression (GWR) 
at aggregated-neighborhood level. 

Fig. 8. Spatial distribution of GWR coefficients at the neighborhood scale.  
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impacts on house price appreciation rates vary across space and should 
be modeled place by place. Hence, it is necessary to explicitly embed 
spatial relationships for the predictive modeling of the house price 
appreciation rate. 

3.3. Model and determinants analysis 

Results of this study show promising findings in estimation of house 
price appreciation rate. We compare a series of models at two spatial 
scales, interpreting the results of these models, and explaining the 
spatial patterns of the house price appreciation rates. Different from the 
MLR which mostly models linear relationships, the decision tree-based 
machine learning method can build non-linear relationships between 
features and house price appreciation rate, and the GWR can model 
spatial non-stationarity between the variables, which indeed provide 
better prediction and a more holistic explanation. 

We also examined the importance and the impacts of the factors 
related to house price appreciation at fine-scale and neighborhood-scale. 
The emerging sources of house photos, street view images, human 
mobility patterns and socioeconomic attributes, enable us to examine 
house price appreciation rate comprehensively from various aspects. 
Results show that by combining visual scenery of a house, built envi
ronment, dynamic human mobility patterns, and socioeconomic attri
butes of neighborhoods with machine learning approaches, the 
estimation accuracy of the price appreciation rate can be improved by a 
large margin. Among them, high-dimensional visual features extracted 
from street view images can provide important information related to 
house price appreciation rate. Such visual features capture intangible 
information which was not explored and discussed before. With better 
quantifying high-level semantic information from visual features, the 
procedure of policy making might be improved from these new insights. 

In addition, several interesting findings are discovered in this study. 
For instance, at fine-scale, we found that houses with lower prices and 
small house area may have higher house appreciation potential. We dig 
into this discovery further and attempt to quantify and explain such a 
relationship. 

As shown in Fig. 9, the logarithm of house prices in 2014 and the 
actual house price appreciation rates follow an exponential decay with 
λ = − 2.758. It means that with the logarithm of house prices increases, 
the lower the rate of appreciation of house prices, and the slower the 
decay slope. The reasons might be traced from two aspects. On the one 
hand, a greater percentage of increment is not equal to a greater actual 
increment of prices. Therefore, houses may have larger price increment 
while less increased percentage. On the other hand, there are fewer 
houses with high prices compared with medium and low price houses. 

For those houses with high prices, since their prices have already been at 
a high level, there is limited room for house appreciations and thereby 
are more stable. 

In addition, we conducted the correlation analysis between house 
area and house prices, and the result shows these two variables are 
significantly highly correlated with a coefficient of 0.62. Since houses 
with low prices typically have a small area, the correlation coefficient 
between house price appreciation rates and house area is thereby 
negative (correlation coefficient − 0.49) as well. Therefore, compared 
with houses with high prices, those houses with low prices and small 
areas may have greater house price appreciation rates. 

Besides, the more convenience the house with nearby facilities and 
higher transportation accessibility, the higher the house price appreci
ation rate is. At the neighborhood-scale, it shows that the spatial het
erogeneity of variables exist and their influences to the distribution of 
the house price appreciation rate are different. Coefficients of variables 
such as distance to hospital, average travel mean time, even diverge 
from negative to positive. Therefore, it is necessary to model the spatial 
relationships between house price appreciation rate and these variables 
to better interpreting the underlying factors. 

4. Discussion 

4.1. Implications of policies 

Understanding the variability and dynamic changes of house price 
appreciation rates are crucial for the government policy decision mak
ing. On the one hand, house price appreciation rates are closely related 
to various groups of people in cities, such as newly married couples, 
workers as labors, and youths who need school district housing. Hence, 
house price appreciation rate-related information can provide tutorials 
for their daily lives and house buying. It also helps the policy makers in 
planning housing development to fit with the job opportunities distri
bution and various educational facilities as well. On the other hand, the 
paper addresses the relationships between several factors and house 
prices, which might be helpful for sustainable city planning and urban 
infrastructure construction. The results and conclusions may help the 
government a more coordinated manner with empirical data support in 
urban development. In addition, the data-driven paradigm and 
advanced machine learning methods show potentials in providing in
sights for decision makings. For instance, street view images can be 
employed as a useful tool for urban environment observation and 
monitoring. The urban environment and neighborhood scenery can be 
captured comprehensively and processed efficiently with deep learning 
algorithms, which indeed will benefit people in cities. The data fusion of 
different aspects of big data also illustrates the data-driven paradigm in 
discovering and addressing the development of cities. Therefore, it is 
helpful for policy makers to understand the dynamics of housing 
appreciation rates when formulating housing policies. 

4.2. Limitations and future directions 

Here, we also discuss several limitations of this work that should be 
paid more attentions in future studies. Firstly, we only take one region 
(the Boston area) as a case study area. Since the built environment, 
human mobility patterns, and social class conditions of neighborhoods 
may vary in different cities, more regional factors can be taken into 
consideration in the future. For example, large vs. small, eastern vs. 
western, and coastal vs. inland cities can be considered to improve the 
generalization ability and replicability of the proposed framework for 
estimating house price appreciation rates. 

Secondly, as we collected the house photos from VGI sources, the 
uncertainty of the data is a common concern for quality assurance. 
Models using house photos do not perform as good as the other three 
data sources, which might result from the low quality of sample data in 
capturing various scenery of a house. Instead, a better DCNN or other 

Fig. 9. Fit curve between logarithm of house prices (2014) and house price 
appreciation rates. 
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models that are not biased to samples and can differentiate complex 
visual features of different houses should be trained in order to improve 
the accuracy of the framework. 

Thirdly, the urban renewal may occur in the past 5 years in Boston. 
Though the house price data are collected between 2014 and 2019, 
other attributes are limited to a specific time period. For example, POI 
data provided by SafeGraph was collected in the year 2018, only human 
mobility data in the year 2018 was collected from Uber Movement 
project, and the most recent street view images (may range from 2012 to 
2018 for a specific place) were harvested, etc. However, the develop
ment of urban construction indeed has impacts on house price appre
ciation rates as well. These issues have not been addressed in this paper 
due to the restrictions of data sources. In the future, we expect to involve 
dynamics of urban land use changes into the framework with richer 
datasets. 

Lastly, although we attempt to understand the patterns of house 
price appreciation rate, deeper exploration and more explanations could 
be added in future works. For example, the differences of appreciation 
rates between houses with different price ranges and in different 
geographic regions can be compared. Also, our framework focuses more 
on evaluating the value of several emerging data sources in house price 
appreciation and discovering the spatial distribution of house price 
appreciation rates with their spatial dependencies. While the causality 
relationships between variables and house price appreciation rates are 
also necessary for policy decision making. In the future, we will try to 
involve more time-series data and approaches from economy to build 
such relationships and improve the interpretability of deep learning 
models. 

5. Conclusion 

In summary, we present a multi-source-data-fusion framework to 
estimate the house price appreciation rates from various perspectives by 
the utilization of several big geo-data sources and the state-of-the-art 
machine learning approaches. Particularly, we extract high-level vi
sual features from street view images and house photos to depict inner 
and outer appearance of houses using deep learning methods, which 
have certain impacts on house price appreciation rates. 

This study offers insights into the potential of machine learning and 
spatial statistical approaches in modeling complex urban environments 
using multi-source geospatial big data. The contribution of the study is 
threefold: First, we propose to predict the house price appreciation rate, 
which differs notably from existing research for the absolute price 
estimation. Second, we build a big-data-driven multi-feature-fusion 
framework which utilizes various data sources from different aspects, 
especially with visual features extracted from house photos and street 
views, in order to enrich the knowledge of the house price appreciation 
modeling with state-of-the-art machine learning approaches at two 
spatial units. Third, we focus not only on improving the accuracy of a 
model, but also seeking explanations for what factors would influence 
the property value to provide suggestions for housing policies. Our 
research integrates computer science and social science research by 
utilizing advanced techniques with emerging data sources, and could 
provide new insights for researchers from economy, geography and 
urban planning towards future land-use studies. 
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