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State‑specific projection 
of COVID‑19 infection in the United 
States and evaluation of three 
major control measures
Shi Chen1, Qin Li1*, Song Gao2*, Yuhao Kang2 & Xun Shi3

Most models of the COVID-19 pandemic in the United States do not consider geographic variation 
and spatial interaction. In this research, we developed a travel-network-based susceptible-exposed-
infectious-removed (SEIR) mathematical compartmental model system that characterizes infections 
by state and incorporates inflows and outflows of interstate travelers. Modeling reveals that curbing 
interstate travel when the disease is already widespread will make little difference. Meanwhile, 
increased testing capacity (facilitating early identification of infected people and quick isolation) 
and strict social-distancing and self-quarantine rules are most effective in abating the outbreak. The 
modeling has also produced state-specific information. For example, for New York and Michigan, 
isolation of persons exposed to the virus needs to be imposed within 2 days to prevent a broad 
outbreak, whereas for other states this period can be 3.6 days. This model could be used to determine 
resources needed before safely lifting state policies on social distancing.

The Coronavirus disease (COVID-19) is an ongoing pandemic that poses a global threat. As of March 26, 2020, 
more than 520,000 cases of COVID-19 have been reported in over 200 countries and territories, resulting in 
approximately 23,500 deaths1–9. In the United States, the first known positive case was identified in Washington 
state on January 20, 202010. By March 26, the epidemic had been rapidly spreading across many communities 
and present in all 50 states, plus the District of Columbia; the total number of confirmed cases in the United 
States rose to 78,786 with 1137 deaths.

To combat the spread of COVID-19, the government has taken actions in various dimensions, including ban-
ning or discouraging domestic and international travels, announcing stay-at-home orders to curb non-essential 
interactions for reducing transmission rate, and urging commercial laboratories to increase test capacity. To curb 
traveling, on January 31, the United States government announced travel restrictions on travelers from China; 
on February 29, it announced travel ban against Iran and advised travel with caution to Europe11 ; on March 11, 
it announced travel restrictions on most of European countries. To reduce human-interactions, on March 13, 
a national emergency was declared; as of March 28, 39 states had issued either statewide or regionally stay-at-
home or shelter-in-place order, requiring residents to stay indoors except for essential activities. To increase test 
capacities, on February 4, the United States Food and Drug Administration (FDA) approved the United States 
Centers for Disease Control and Prevention (CDC)’s test, which was later to be proved inconclusive12; on Febru-
ary 29, the FDA relaxed its rules for some laboratories, allowing them to start testing before the agency granting 
its approvals; on March 27, FDA issued an Emergency Use Authorization to a medical device maker, the Abbott 
Labs, for the use of a coronavirus test that delivers quick testing results13.

So far, since there is no treatment or vaccine for SARS-COV-2 available, these actions have been taken 
largely based on classic non-pharmaceutical epidemic controls. Works on evaluating similar measures in other 
countries, especially China, started to emerge7,14,15. For example, the effect of travel restriction on delaying the 
virus spread in China has been reported5,16. However, it is still unclear what control and intervention measures 
would have actual effect, especially to what extent, on abating the spread of COVID-19 in the United States. As 
the United States has very different political, administrative, social, pubic health and medical systems, as well as 
culture from China, this remains to be a critical question to address, especially considering that some measures 
and policies come with extremely high economic and societal costs.
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There have been numerous modeling works projecting or predicting the trend of the COVID-19 pandemic 
regionally or globally17,18. Most of the works apply a global model to the entire study area, either a region, a 
country, or the entire globe. Rarely the variation of different parts within one area and the interactions among 
those parts are taken into consideration. However, a country like the United States features diversity in all aspects. 
On the one hand, the overall situation of the entire country is a result emerging from local situations and their 
interactions, and thus, ignoring the local interactions can hardly lead to a high-quality overall model; on the other 
hand, as all interventions and policies finally have to be adapted to the local situation, a localized modeling will be 
much more relevant to the real-world practices. Spatially and network-related epidemic models can describe the 
geographical spread of viral dynamics7,19–21. Recent studies have shown the importance of incorporating timely 
human mobility patterns derived from mobile phone big data and global flight networks into the epidemiology 
modeling process and in public health studies5,7,22–30. Without accurate models that incorporate human mobility 
patterns and spatial interactions26,27, it is rather challenging to quantify the sensitivity of parameters, and using 
the linkage to real practices to make sensible policy suggestions.

Accordingly, the core of the study is twofold. First, to localize the modeling, we developed a travel-network-
based susceptible-exposed-infectious-removed (SEIR) mathematical compartmental model system that simul-
taneously characterizes the spatiotemporal dynamics of infections in 51 areas (50 states and the District of 
Columbia). Each state or district has its own model, and all models simultaneously take into account inflows 
and outflows of interstate travelers.

Second, to improve the practical relevance, we chose to use three parameters that can directly correspond to 
possible practical means to discover, combat, and control the spread of the disease, and quantify their impact on 
the final output of the model. The three parameters include: (1) the transmission rate b, which corresponds to 
the local social-distancing enforcement, e.g., the stay-home order; (2) the detection and reporting rate r, which 
corresponds to the testing capacity; and (3) the travel ratio αt , which corresponds to the ratio of interstate travel 
volume compared to that of 2019 during the same period.

The modeling is a dynamic projection process (see the ‘methods’ section). We employed daily and state-
specific historical data to incrementally calibrate the model, and then used the calibrated model to predict future 
scenarios under different non-pharmaceutical control and intervention measures. During this process, we ran 
data assimilation methods to identify parameter values that optimally fit the current situation (see more details in 
the methods and supplementary material). To project into the future, we set different values for the parameters to 
create different control and intervention scenarios, and then ran the simulation to see their impact on the model 
results. The final output of the model is the total number of confirmed cases in a state on a particular day. The 
current strategy in the United States is to isolate people who have the symptoms of COVID-19. An ideal scenario 
is to have an 100% reporting rate, i.e., every infected case gets confirmed and thus isolated quickly. Another ideal 
setting is to have everyone who was in contact with the infected gets identified and isolated quickly as well. Our 
model incorporated these considerations and examined such direct isolation of the exposed compartment in 
detail. We particularly investigated the impact of quickness of such actions through mathematical modeling 
and scenario analysis.

A notable result from our modeling is that the impact of interstate travel restriction on the model output is 
modest. This can be explained by that when the disease has already widespread in all states, the relatively small 
number of cases in the travelers will cause little difference to the local situation, compared with the effects of 
local social-distancing and isolation rules and the increase of testing capacity.

Results
Figure 1 shows the effect on spatiotemporal dynamics of infectious population across states by setting the coef-
ficients at different configurations. An interactive map-based scenario simulation web dashboard is also available 
at https​://geods​.geogr​aphy.wisc.edu/covid​19/us_model​. We set r = 1− αr(1− r0) and b = αbb0 , where r0 and 
b0 are the report and transmission rate as of March 20, 2020 using data assimilation fitting result. By decreasing 
αr from 1 to 0, we increase the report rate from the original r0 to 1, and by decreasing αb we decrease the trans-
mission rate. Most states, except a few such as NY, MI, and CA, see drastic improvement when the transmission 
rate is decreased and the testing(reporting) rate is increased, but the reduction of interstate traffic alone is not as 
effective. Our modelling reveals that once the epidemic in an area has reached a certain stage, the difference that 
can be caused to the local situation by the relatively small number of imported cases due to the interstate travel 
is insignificant. According to our modeling, all states in the United States have reached that stage. Therefore, 
as long as those travelers follow the social-distancing rules and the local government provides sufficient test-
ing capacity, there is no apparent urge to curb interstate travel. This is in line with the finding in16,28, in which 
the authors projected the pick up of the spreading in other parts of China outside of Wuhan with about 3 days 
delay, and in the world outside China within a 2–3 weeks of delay, assuming no further screening is in place. 
Different from China where the city of Wuhan is clearly the epicenter of the COVID-19 outbreak and the travel 
ban quickly gets the rest of China under control, most of the states in the United States have already had signs 
of community spread by March 20, 202031, and banning other states will hardly make much difference to the 
local situation. In addition, Fig. 2 shows the corresponding prediction time series of infectious population in 
top 15 states under two scenarios (see also Supplementary Fig. S14): (A) the reported rate and the transmis-
sion rate remained unchanged as of March 20, 2020, with αr = αb = 1 , in which most states will continue their 
exponential growth before reaching their peak; (B) with αr = αb = 0.1 , that is, when the transmission rate b is 
much smaller and the reported rate r is much higher (closer to 1), we can “flatten the curve” on the virus (i.e., 
reducing the spread of the virus).

We further investigate the effect of increased testing capacity and report rate. As shown in Fig. 3a, most states 
see drastic improvement when the report rate increases. All states, by April 29, see monotonically exponential 

https://geods.geography.wisc.edu/covid19/us_model
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reduction of infections. The impact is strong in states such as MA, AZ, FL, and OR, but relatively weak in states 
such as NY, MI and IL. In Fig.3b, we study the effect of αr and αb on the basic reproduction rate Re in NY (see 
other states in Supplementary Fig. S15). It can be seen that merely raising the report rate cannot fully make 
Re < 1 . To mitigate the spread of COVID-19 in these states, a proactive approach needs to be taken, and quick 
detection and isolation of the exposed population need to be in place instead of being delayed until the onset of 
the symptoms. This measure can prevent the exposed population from potentially infecting other susceptible 
people. In Fig. 3c, we plot the increase of infections in terms of Dq (i.e., the temporal lag in putting a person into 
quarantine) for the states that are sensitive to change of Dq , including NY, NJ, IL, GA, MI, CO, WI, LA, TX, PA, 
MA, and TN. The longer one waits to inform and isolate the exposed population, the more infected people one 
observes. For example, there is a sharp transition for NY and MI. If the average detection and isolation time is 
more than 2 days, the total number of infections will significantly increase.

The results again showed the importance of sufficient testing and strong transmission-intervention measures 
such as social distancing and self-quarantine policy32. These policies can help quickly identify the source of 

Figure 1.   The spatiotemporal distribution of predicted infected population (in natural logarithm scale) 
across all states under different simulation scenarios: (A) αr = 1 and αb = 1 , i.e., all parameters took 
the values of the initial configuration, obtained through data assimilation method using the numbers of 
confirmed cases during March 1 – March 20, 2020; (B) the travel flow was reduced to αt = 0.05 , while other 
parameters values remained unchanged; (C) αr = 0.1 and αb = 1 ; (D) αr = 1 and αb = 0.1 ; (E) αr = 0.1 , 
αb = 0.1 . In the simulations, the transmission rate was set to be b = αbb0 and the reporting rate was set to be 
r = 1− αr(1− r0) . Where r0 and b0 were the reporting rate and the transmission rate on March 20, 2020, which 
are inferred from the data assimilation step (Note: The maps are created using Esri’s ArcGIS 10.7 software).
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infection and isolate them before they infect the remaining population. This measure presumably comes with 
a lower economical cost.

We finally investigate the stability of our statements on the parameters chosen in the model. There are a 
number of parameters in the model that are determined according to medical studies and thus necessarily 
contain ambiguity. One parameter, γ , is especially hard to be set at a particular value due to the lack of medical 
evidence. This parameter reflects the level of infectiousness of the “exposed” compartment, a population that is 

Figure 2.   The prediction time series of the total infected population in the 15 most affected states under 
two scenarios: (A) αr = αb = 1 , i.e., both the reported rate and the transmission rate remained unchanged; 
(B) αr = αb = 0.1 , i.e., the transmission rate b was smaller and the reported rate r was larger (closer to 1) as 
r = 1− αr(1− r0).

Figure 3.   (A) Susceptible population (S) on April 29, 2020 as a function of αr . S(αr = 1) is the susceptible 
population on April 29 computed with the report rate set as the original report rate inferred from the data 
assimilation step. In all states, S increases as αr decreases, meaning that more people stay unaffected when a 
higher report is enacted. (B) Re , the basic reproduction number, on April 29 for different αb and αr in NY. The 
red line is the level set Re = 1 . It can be seen that increasing the reported rate helps diminish the reproductive 
number, but cannot reduce Re under 1 if the original transmission rate b0 is applied; (C) Susceptible population 
on April 29 for different Dq . S(αr = 1) is the same as in (A). S significantly depends on the period from expose 
to quarantine.
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presymptomatic. Recent studies indicate that presymptomatic patients seem to be more infectious than patients 
who have symptoms on site33. We therefore run our model with different values of γ to identify the significance of 
this particular parameter. Our numerical result suggests that within a moderate range of γ , our conclusions still 
stand true. In particular, as shown in Fig. 4, by setting the “exposed” compartment being more infectious than 
the “infected” compartment, the numerical solution shows the same trend. We still observe that, with a higher 
report rate, the number of non-infected population exponentially increases (i.e., less people would get infected), 
and when a proactive approach is taken, meaning that the “exposed” compartment gets quickly separated from 
the rest of the population, the non-infected population drastically increases as Dq , the delay of the separation 
time, gets shortened. This means that the dependence of our conclusion on the parameter γ is stable, and the 
above statements are consistent.

We should emphasize that in our simulation, we do not differentiate patients with severe or mild symptoms. 
A more dedicated numerical experiment that separates the two categories could potentially give more detailed 
information. For example, in another agent-based modeling study34, researchers consider patients with mild to 
severe symptoms to evaluate the impacts of the timing of social distancing and adherence level on COVID-19 
confirmed cases.

Discussion and conclusion
Modeling and analyzing the spread of COVID-19, and assessing the effect of various policies could be instru-
mental to national and international agencies for health response planning5,8,15–17,32. We show that the effect of 
interstate travel reduction is at most modest in the United States when the outbreak has already widespread 
in all states. On the other hand, we need to impose strong transmission-reduction intervention and increased 
testing capacity and report rate to contain the spread of virus. The result is based on mathematical and statisti-
cal analyses of transmission control measures and in agreement with previous findings2,3,5,14–16, suggesting that 
the effect of travel ban at a later stage of the outbreak is rather modest. This is also in line with the fact that the 
outbreaks still occurred in Europe even upon the strong travel ban on the earlier epicenter of Wuhan and its 
surrounding cities in China. We also quantitatively show that the transmission-reduction intervention such as 
policies on the social-distancing and shelter-in-place rules, and the increase of testing rate, which facilitates 
immediate isolation upon exposure, will significantly reduce the total infected population. Such effect is mostly 
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Figure 4.   (A) Susceptible population (S) on April 4, 2020 as a function of αr . The panels on the left and on the 
right are results from γ = 0.5 and γ = 1.5 , respectively. For both γ , S increases as αr decreases, meaning that 
more people stay unaffected when a higher report is enacted. (B) Susceptible population on April 4, 2020 for 
different Dq and different values of γ . For those states whose susceptible population is much smaller than their 
total population due to a high infection rate (such as in NY), S significantly depends on Dq for both γ < 1 and 
γ > 1.
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visible for the states of NY, NJ, MI, and IL. Particularly, our modeling results show that for states such as NY and 
MI, to achieve an optimal infection reduction, a more proactive approach needs to be taken to quickly identify 
the exposed population and isolate them within two days of exposure in order to ensure the infection reduction. 
The result is in agreement with previous findings7,8.

We do need to emphasize that the model itself does not distinguish different ways of traveling across states. 
Indeed, if the interstate travel is conducted mostly through transiting through busy airports and train stations, 
and the social-distancing policy is not strictly imposed, then the high population density at these places will 
bring up the transmission rate b locally in space and time, leading to a higher infection rate. This is a severe 
consequence, but it should not be counted as the direct result of relaxing travel restrictions.

Moving forward, we estimate that the decline in travel has a modest effect on the mitigation of the pandemic. 
We need a stronger transmission-reduction intervention and increased detection and report rate in place to 
prevent the further spread of the virus. The results could potentially be used to design an optimal containment 
scheme for mitigating and controlling the spread of COVID-19 in the United States.

Methods
The mathematical model that simulates the spatiotemporal dynamics of state-level infections in the United 
States is a modified travel-network-based SEIR compartmental model in epidemiology by taking into account 
the variation of the 51 administrative units and their interactions14,35–37. It consists of 51 ordinary differential 
equation (ODE) systems, with each one characterizing the evolution of susceptible (S), exposed (E), reported 
(I), unreported (U) and removed (R) cases per state (Supplementary Fig. S1 and see more details in the supple-
mentary material). The 51 ODE systems are then coupled through the state-to-state travel network flows (see 
Supplementary Fig. S2) that were extracted from the aggregated SafeGraph mobility data and weighted by αt
38,39. Unlike most other models, we also incorporate the potential asymptomatic transmission. This makes the 
derivation of the basic reproduction number R0 different. Besides, each ODE system also includes two unknown 
parameters: the transmission rate (b) and the report rate for each state (r). The unknown parameters are inferred 
based on the total number of confirmed cases in each state for the period of March 1–March 20, 2020. The source 
of infection case data is the Center For Systems Science and Engineering at the Johns Hopkins University9.

The parameters and model specification are defined as follows:

The ODE system is equipped with the following initial data ( t = 0 standing for March 1, 2020):

In the equation, the unit for t is one day. Ni(t) is the total population of state i at time t, and Pi = Si + Ei + Ui is 
the free population. nij is the number of inflow from state j to state i. bi and ri are the transmission rate and report-
ing rate of state i. cI ( cU , resp.) is the proportion of positive cases that show critical condition for I (unreported 
cases U, resp.). De is the latent period. Dc and Dl are the infectious periods of critical cases and mild cases. αt is 
a parameter to tune the traffic flow.

We emphasize two main differences in modeling compared with existing literature. In7, the authors study the 
inter-city traffic and its impact on the spreading of COVID-19 in China. The situation in China and that in the 
US are very different. In China, the epicenter is clear: the city of Wuhan, Hubei province, and the outbreak starts 
mid-January, 2020. The COVID-19 outbreak in the US, however, is multi-sourced. The consequence is that in 
the model in7, the initial condition for cities excepts Wuhan is clear: the latent, the reported and the unreported 
cases are all zero. In this model, however, the initial conditions Ei0 are unclear for all states; Another big differ-
ence is, according to clinical findings, the latent cases also have the potential of transmitting the virus, and thus 
we add the interaction of Ei with Si into the increment of Ei7,40,41.

The unknown parameters and state variables in the equation set are 

∗	� bi : the transmission rate with non-informative prior range [1, 1.5];
∗	� ri : the report rate with non-informative prior range [0.1, 0.3];
∗	� Ei0 : the data for the latent population with non-informative prior range [0, 500].
∗	� Ui0 : the initial data for the unreported population with non-informative prior range [0, 200].
∗	� Si0 : the initial data for the susceptible population defined by Ni − Ei0 − Ii0 − Ai0.

(1)
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(2)Si(0) = Ni − Ei0 − Ui0 − Ii0 , Ei(0) = Ei0 , Ii(0) = Ii0 , Ui(0) = Ui0 , Ri(0) = 0.
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Other parameters are: 

γ:	� the transmission ratio between unreported and latent. In the simulation we set it to be 0.5;
Dc:	� the average duration of infection for critical cases. We assume Dc = 2.3 days42.
De:	� the average latent period. According to43, De = 5.2 days.
Dl:	� the average duration of infection for mild cases. We assume Dl = 6 days.
αt:	� the ratio of interstate travel volume compared to that of 2019 during the same period. The travel flow 

information nij was extracted from the SafeGraph mobility data, and we set αt = 0.5 to represent the travel 
reduction situation observed in the year of 2020.

cI:	� proportion of critical cases among all reported cases. We choose cI = 0.1.
cU:	� proportion of critical cases among all unreported cases. We assume cA = 0.2.

There is an essential assumption made in the model: the homogeneity in the population. It means that the 
traffic flow is a good representation of the total population without considering their demographic and socio-
economic characteristics. The susceptible, exposed, and unreported move in and out of states at the same rate. 
This explains the SiPi  , 

Ei
Pi

 and Ui
Pi

 terms in the Si/Ei/Ui equation.
The effective reproductive number Re could be computed as

Re depends on time due to the time dependence of E and U.
The COVID-19 transmission dynamics (the ODE system) was simulated using the Forward Euler method, 

with each day discretized into 24 smaller time periods to ensure the numerical stability (see Supplementary 
Fig. S3). The parameter fitting was conducted under the Bayesian formulation that combines the effect of the 
underlying dynamics governed by the ODE system, serving as the prior knowledge, and the collected data, 
appearing in the likelihood function, to generate the posterior distribution that characterized the behavior of 
the state variables, including S, E, I, U, R, as well as the two unknown parameters, b and r. For this classical data 
assimilation problem, we employed the Ensemble Kalman Filter method that was derived from the Kalman filter 
and tailored to deal with problems with high-dimensional state variables44,45. The method proves to be effective 
when the measuring operator is linear and the underlying dynamics is Gaussian-like. It has been applied to a vast 
of problems that do not strictly satisfy the Gaussianity requirement. To apply this method, we generated 2000 
samples according to the prior distribution, and evolve the samples through the dynamics of the ODE system. 
The samples were then rectified at the end of each day, using the announced number of confirmed cases, for 
tuning the two unknown parameters b and r.

At the beginning of the simulation, March 1, only a few states had non-zero confirmed cases. The true 
numbers of exposed people and unreported cases on that day, however, are unknown. These two numbers are 
also the state variables that need to be inferred to using the collected infection data. On March 1, we put a non-
informative prior with range [0, 500] and [0, 200] over the exposed latent population and unreported infectious 
population in each state, respectively. Supplementary Figs. S4–S13 show the data assimilation results for different 
states including the number of people in different compartmental groups and their temporal changes with 95% 
credible intervals. The average reporting rate r over all states is 0.2266 at the end of March 20 through the data 
assimilation method.

For forecasting (in supplementary material), we performed scenario studies of two types. First, we ran the 
mathematical model by applying the initial data obtained as of March 20 into the future for the next 40 days, 
but with different configurations of (b, r,αt) . The simulation results out of this setting were then compared with 
those from the setting that the three parameters remained unchanged for each state. To quantify and visualize 
the difference, we compared the increase of the percentage of the non-affected population when the measures 
of stay-at-home, increasing test rate, and travel bans were enacted.

The second scenario was about a more ideal situation: every confirmed case would get isolated immediately, 
as well as those who had been exposed to those confirmed cases, no matter if those who had been exposed had 
started to show symptoms or not. We built a new mathematical model that incorporated such isolations to study 
the effect of them. A new quarantined compartment (Q) was introduced into the model. Through the simulation, 
we examined the correlation between the average action-taking time (i.e., temporal lag in putting a person into 
quarantine denoted by Dq ) and the increase of non-infected population. In both scenario studies, the simulation 
was run with the Forward Euler ODE solver, during which each day was divided into 24 intervals to achieve a 
numerical stability.

As a SEIR-type epidemic model, this model describes the dynamics of different compartments of the popula-
tion, and assumes homogeneity within each compartment. However, we should note that this assumption may 
not be valid in real-world scenarios with heterogeneous populations and infections. Indeed, when an individual 
contracts the disease, the status could be either mild or severe. In our model, this is absorbed by the report rate 
ri but is not explicitly differentiated in the model. A more sophisticated model should have the heterogeneities 
included, but that would pose a significant higher computational demand and more detailed empirical or clinical 
data support. We leave that to future research efforts.

Data availability
The epidemiological data were retrieved from an open source project: Novel Coronavirus (COVID-19) Cases, 
developed by the Center For Systems Science and Engineering at the Johns Hopkins University (https​://githu​

(3)Re =
b

E + U

[

γDeE +
DcDlU

cUDl + (1− cU )Dc

]

.

https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data
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b.com/CSSEG​ISand​Data/COVID​-19/tree/maste​r/csse_covid​_19_data). In addition, we collected millions of 
points of interest (POIs) with their foot-traffic and anonymous mobile phone users’ travel patterns in the United 
States from SafeGraph. The data for academic research can be requested at https​://www.safeg​raph.com.

Code availability
The code used for modeling and analysis in this paper is available in the GitHub repository: https​://githu​b.com/
GeoDS​/Trave​l-Netwo​rk-SEIR.
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