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Transferring multiscale map styles using generative
adversarial networks
Yuhao Kang a, Song Gao a and Robert E. Roth b

aGeospatial Data Science Lab, Department of Geography, University of Wisconsin, Madison, WI, USA;
bCartography Lab, Department of Geography, University of Wisconsin, Madison, WI, USA

ABSTRACT
The advancement of the Artificial Intelligence (AI) technologies
makes it possible to learn stylistic design criteria from existing
maps or other visual art and transfer these styles to make new
digital maps. In this paper, we propose a novel framework using
AI for map style transfer applicable across multiple map scales.
Specifically, we identify and transfer the stylistic elements from a
target group of visual examples, including Google Maps,
OpenStreetMap, and artistic paintings, to unstylized GIS vector
data through two generative adversarial network (GAN) models.
We then train a binary classifier based on a deep convolutional
neural network to evaluate whether the transfer styled map
images preserve the original map design characteristics. Our
experiment results show that GANs have great potential for
multiscale map style transferring, but many challenges remain
requiring future research.

RÉSUMÉ
Les avancées en intelligence artificielle (IA) permettent d’apprendre
à une machine les critères de conception cartographique. Dans ce
papier, nous proposons un nouveau cadre logiciel pour transférer
les styles cartographiques. Les styles cartographiques dédiés aux
cartographies telles que celles de Google Maps, OpenStreetMap
ou même les styles utilisés par les artistes peintres peuvent être
appris et transférés à des données SIG vectorielles grâce à deux
réseaux antagonistes génératifs (GANs). Un classifieur binaire basé
sur un réseau de neurones convolutif profond est entrainé pour
évaluer si les images des styles transférés préservent les
caractéristiques cartographiques. Nos résultats expérimentaux
montrent que les GANs ont un fort potentiel pour le transfert des
styles cartographiques mais qu’il reste de nombreux défis à relever.
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1. Introduction

A map style is an aesthetically cohesive and distinct set of cartographic design character-
istics (Kent & Vujakovic, 2009). The map style sets the aesthetic tone of the map, evoking a
visceral, emotional reaction from the audience based on the interplay of form, color, type,
and texture (Gao, Janowicz, & Zhang, 2017). Two maps can have a very different look and
feel based on their map style, even if depicting the same information or region (Figure 1;
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see Kent & Vujakovic, 2009; Stoter, 2005 for comparisons of in-house styles of national
mapping agencies). Arguably, map styling – and the myriad design decisions therein –
is a primary way that the cartographer exercises agency, authorship, and subjectivity
during the mapping process (see Buckley & Jenny, 2012 for recent discussions on
aesthetics, style, and taste).

Increasingly, web cartographers need to develop a coherent and distinct map style that
works consistently across multiple map scales to enable interactive panning and zooming
of a ‘map of everywhere’ (Roth, Brewer, & Stryker, 2011). Such multiscale map styling taps
into a rich body of research on generalization and multiple representation databases in
cartography (see Mackaness, Ruas, & Sarjakoski, 2011 for a compendium developed by
the ICA Commission on Generalization). A large number of generalization taxonomies
now exist to inform the multiscale map design process (e.g. Christophe et al., 2016;
DeLucia & Black, 1987; Foerster, Stoter, & Köbben, 2007; McMaster & Shea, 1992;
Raposo, 2017; Regnauld & McMaster, 2007; Stanislawski, Buttenfield, Bereuter, Savino, &
Brewer, 2014; Shen, Ai, Wang, & Zhou, 2018), most of which focus on vector geometry
operations for meaningfully removing detail in geographic information (e.g. simplify,
smooth, aggregate, collapse, merge).

Brewer and Buttenfield (2007) argue that adjusting the symbol styling can have as
great an impact in the legibility of multiscale map designs as other selection or geometry
manipulations. Accordingly, Roth et al. (2011) discuss how cartographers can manipulate
the visual variables, or fundamental building blocks of graphic symbols (e.g. shape, size,
orientation, dimensions of color like hue, value, saturation, and transparency), to promote
legibility and maintain a coherent style across map scales. A number of web mapping ser-
vices and technologies now exist to develop and render such multiscale map style rules
as interlocking tilesets, such as CartoCSS,1 Mapbox Studio,2 TileMill,3 or TileCache.4 Beyond
authoritative or classic map styles (see Muehlenhaus, 2012 for a review), these tools
enable multiscale web map styling that is exploratory, playful, and even subversive (for
instance, see Christophe and Hoarau, 2012, for examples of multiscale map styling
using Pop Art as inspiration). Despite these advances, establishing a map style that

Figure 1. The Google Maps (left) and OpenStreetMap (right) styles for Madison, Wisconsin (USA). Google
Maps has a flatter visual hierarchy to emphasize labels and points of interests as well as enable vector
overlays, whereas OpenStreetMap is more visually complex and includes a wider variety of features and
symbols.
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works across regions and scales remains a fundamental challenge for web cartography,
given the wide array of stylistic choices available to the cartographer and the limited gui-
dance for integrating creative, artistic styles into multiscale maps like Google Maps5 and
OpenStreetMap (OSM).6

Here, we ask if artificial intelligence (AI) can help illuminate, transfer, and ultimately
improve multiscale map styling for cartography, automating some of the multiscale
map style recreation and assisting the cartographer in developing novel representations.
Our work draws from the active symbolism paradigm in cartography and visualization
(Armstrong & Xiao, 2018), in which ‘the production of maps switches from a sequence
of actions taken by a mapmaker to a process of specifying criteria that are used to
create maps using intelligent agents’. Specifically, whether AI can learnmap design criteria
from existing map examples (or works of art) and then transfer these criteria to new multi-
scale map designs.

Latest AI technology advancements in the past decade include a range of deep learning
methods developed primarily in computer science for image classification, segmentation,
objection localization, style transfer, natural language processing, and so forth (Gatys,
Ecker, & Bethge, 2016; Goodfellow, Bengio, Courville, & Bengio, 2016; LeCun, Bengio, &
Hinton, 2015). Recently, GIScientists and cartographers, along with computer scientists
have been investigating various AI and deep learning applications such as geographic
knowledge discovery (Hu, Gao, Newsam, & Lunga, 2018; Mao, Hu, Kar, Gao, & McKenzie,
2017), map-type classification (Zhou, Li, Arundel, & Liu, 2018), scene classification (Law,
Seresinhe, Shen, & Gutierrez-Roig, 2018; Srivastava, Vargas-Muñoz, Swinkels, & Tuia,
2018; Zhang et al., 2018; Zou, Ni, Zhang, & Wang, 2015; Zhang, Wu, Zhu, & Liu, 2019),
scene generation (Deng, Zhu, & Newsam, 2018), automated terrain feature identification
from remote sensing imagery (Li & Hsu, 2018), automatic alignment of geographic features
in contemporary vector data and historical maps (Duan et al., 2017), satellite imagery
spoofing (Xu & Zhao, 2018), spatial interpolation (Zhu et al., 2019), and environmental epi-
demiology (VoPham, Hart, Laden, & Chiang, 2018). Relevant to our work on multiscale map
style, a new class of AI algorithms called generative adversarial networks (GANs) have been
developed to generate synthetic photographs that mimic real ones (Goodfellow et al.,
2014). The GANs input real photographs to train the model, and the resulting output
photographs look at least superficially authentic to human observers, suggesting a poten-
tial application for multiscale map styling. Several promising studies have used GANs com-
bined with multi-layer neural networks to transfer the styles of existing satellite imagery
and vector street maps (Isola, Zhu, Zhou, & Efros, 2017; Xu & Zhao, 2018; Zhu, Park,
Isola, & Efros, 2017; Ganguli, Garzon, & Glaser, 2019). However, several research questions
and uncertainty concerns remain. First, which feature types, symbol styling, and zoom
levels best enable map style transfer? Second, which AI algorithm or combinations of
algorithms work best for map style transfer? Finally, how usable are the resulting maps
after style transfer; do the results appear as authentic maps or not?

To this end, we propose a novel framework to transfer existing style criteria to newmul-
tiscale maps using GANs without the input of CartoCSS map style configuration sheets.
Specifically, the GANs learn (1) which visual variables encode (2) which map features
and distributions at (3) which zoom levels, and then replicate the style using the most
salient combinations. In order to evaluate the results of our framework, we then train a
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deep convolutional neural network (CNN) classifier to judge whether the outputs with
transferred map styling still preserve the input map characteristics.

The paper proceeds with four additional sections. In Section 2, we describe the
methods framework, including data collection and preprocessing, tiled map generation,
and the paired and unpaired GAN models based on Pix2Pix and CycleGAN respectively.
We then describe in Section 3 an experiment using geospatial features in Los Angeles
and San Francisco (USA) to test the feasibility and accuracy of our framework. Specifically,
we provide both a qualitative visual assessment and quantitative assessment of two
different GAN models, Pix2Pix and CycleGAN, at two different map scales. We discuss
potential applications with challenges in Section 4 and offer conclusions and future
work in Section 5.

2. Methods

2.1. Overview

Our proposed methods framework includes three stages as shown in Figure 2. First, we
prepare unstyled or ‘raw’ GIS vector data from a geospatial data source that we wish to
style (here OSM vector data, which is given an initial simple styling for the purpose of
visual display; details below) as well as example styled data sources we wish to reproduce
and transfer (here Google Maps tiles and painted visual art). Second, we configure two gen-
erative adversarial network methods to learn the multiscale map styling criteria: Pix2Pix,
which uses paired training data between the target and example data sources, and Cycle-
GAN, which can use unpaired training data (details below). Third, we employ a deep con-
volutional neural network (CNN) classifier (described as IsMap below) to judge whether the
outputs with transferred map styling do or do not preserve map characteristics (Evans
et al., 2017; Krizhevsky, Sutskever, & Hinton, 2012).

2.2. Data preparation and preprocessing

Our framework requires two types of map layers as inputs: we refer to these as simple
styled maps and target styled maps. We generate the transfer styled maps by incorporating

Figure 2. The methodology framework for map style transfer and evaluation: (1) data preparation, (2)
map style transfer using GANs, (3) IsMap classifier.
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the geographic features from simple styled maps with the aesthetic styles of the target
styled maps. We then collect and generate the input map layers as raster web map tilesets
that comprise square images, but contain styling symbols that represent different types of
geographic features (e.g. buildings, lakes, roads, and so on).

Tiled map services are among the most popular web mapping technologies for repre-
senting geographical information at multiple scales (Roth, Donohue, Sack, Wallace, & Buck-
ingham, 2015). Such web map tilesets interlock using a multi-resolution, hierarchical
pyramid model. Within this pyramid model, map scale is referred to as zoom level and
expressed in 1–20 notation, with 1 denoting the smallest cartographic scale (i.e.
zoomed out) and 20 the largest cartographic scale (i.e. zoomed in). While the spatial res-
olution gets coarser from the top to the bottom of the tile pyramid, the size of each image
tile in the tileset remains across zoom levels (Peterson, 2011, 2014), typically captured at
256× 256 pixels (8-bit). Therefore, serving pre-rendered image tiles typically is less com-
putationally demanding than dynamically rendering vector map tiles in the browser. We
used two popular tilesets for this study: OpenStreetMap, which we downloaded in raw
vector format without any map styles and served as a tiled web service for the simple
styled maps case using GeoServer,7 and Google Maps, which we acquired using their API
as the target styled maps case. Within OSM data, multiple classes of features exist for
each geometry type (i.e. point, line, and polygon). For the simple styled maps, we rendered
these different classes using different colors and subtle transparency so that they could be
visually discriminated in the resulting tileset. We used the Spherical Mercator
(EPSG:900913) coordinate system for georeferencing the OSM tiles to ensure they
aligned with the Google Maps tileset.

2.3. GANs

Next, we utilized the GANs to generate transfer styled map images by combining the geo-
graphic features of the simple styled maps and the learned map style from the target styled
maps. GANs have two primary components (Goodfellow et al., 2014): the generator G,
which generates fake outputs that mimic real examples using the upsampling vectors
of random noise, and the discriminator D, which distinguishes the real and fake images
according to the downsampling procedure. Following the format of an adversarial loss,
G iterates through a present number of epochs (an entire dataset is passed forward and
backward in one epoch through the deep learning neural network) and becomes opti-
mized when the visual features of the reproduced transfer images have a similar distri-
bution with the ground truth target style and the fake images generated by G cannot
be distinguished by the discriminator D. The training procedures of both G and D occur
simultaneously.

min
G

max
D

V(D,G) = Ex�pdata(x)[logD(x)]

+ Ez�pz(z)[log(1− D(G(z))],
(1)

where x is a real image and z is the random noise.
Since the original GAN aims at generating fake images that have a similar distribution

of features in the entire training dataset, it may not be suitable for generating specific
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types of images under certain conditions. Therefore, Mirza and Osindero (2014) proposed
the Conditional GAN (C-GAN) with auxiliary information to generate images with specific
information. Different from the original GAN, the C-GAN adds hidden layers y that
contain extra conditional information in generator G and discriminator D. The objective
function is as:

min
G

max
D

V(D,G) = Ex�pdata(x)[logD(x|y)]

+ Ez�pz(z)[log(1− D(G(z|y))].
(2)

The auxiliary information in the C-GAN can take many forms of input, such as categori-
cal labels that generate images in a specific category (e.g. food, railways; Mirza & Osindero,
2014), and embedded text to generate images from annotations (Reed et al., 2016). For
multiscale map styling, the target styled maps represent auxiliary information, making
the C-GAN more suitable for our research.

There are two popular types of C-GAN: paired and unpaired. Paired C-GAN uses image-
to-image translation to train a model on two paired groups of images, with output com-
bining content from one image and the style from the other image. Unpaired C-GAN also
completes an image-to-image translation, but with the transfer of images between two
related domains X and Y in the absence of paired training examples. In this research,
we tested both methods, using the Pix2Pix and the CycleGAN respectively, to examine
their suitability for multiscale map style transfer.

2.4. Pix2Pix

Pix2Pix is a paired C-GAN algorithm that learns the relationship between the input images
and the output images based on the paired-image training set (Isola et al., 2017). In
addition to minimizing the objective loss function of general C-GAN, the Pix2Pix generator
trains not just to fool the discriminator, but also to produce ground truth-like output. The
objective function of the extra generator is defined as:

LL1(G) = Ex,y,z[ ‖ y − G(x,z) ‖1 ]. (3)

By combing the two objective functions, the final objective function is computed as:

LPix2Pix = LcGAN(G,D)+ lLL1(G). (4)

For this research, we paired the OpenStreetMap and Google Maps tiles for the same
locations and at the same zoom levels as the input dataset for training the Pix2Pix model.

2.5. CycleGAN

Pix2Pix is appropriate for pairing two map tilesets containing the same geographic extents
and scales. However, Pix2Pix cannot transfer a target artistic style from non-map examples
(e.g. a Monet painting) to a map tileset. Compared with Pix2Pix, CycleGAN learns the style
from one specific source domain (different styles of images) and then transfers the style to
a target domain (Zhu et al., 2017). In other words, CycleGAN does not require two input
images with the same geographic extent, but instead just two input training datasets
that have different visual styles. CycleGAN establishes two associations to achieve the

6 Y. KANG ET AL.



style transfer: G:X � Y and F:Y � X . Two adversarial discriminators DX and DY are trained
respectively, where DX distinguishes the images in dataset X and images generated by
F(y), and DY distinguishes the images in dataset Y and images generated by G(x). The
objective function for establishing the relationship of the images in domain X to
domain Y is represented as:

LGAN(G,DY , X, Y) = Ey�pdata(y)[logDY (y)]
+ Ex�pdata(x)[log(1− DY (G(x))].

(5)

A similar adversarial loss for transforming the images in domain Y to another domain X
is introduced as LGAN(F,DX ,Y ,X), where G generates images that look similar to the images
in the other domain, and D distinguishes the fake images and the real images. CycleGAN
also introduces an extra loss called the cycle consistency loss. After G and F generate
images with a similar distribution to the input domain, the cycle consistency loss guaran-
tees that the generated images can be restored to the original domain. In other words,
x � G(x) � F(G(x)) ≈ x. More details can be found in Zhu et al. (2017). The cycle consist-
ency loss is expressed as:

Lcyc(G, F) = Ex�pdata(x)[‖F(G(x))−x‖1]
+ Ey�pdata(y)[‖G(F(y))−y‖1].

(6)

By combining the two adversarial losses and the cycle consistency loss, the full objec-
tive function is expressed as:

LCycleGAN = LGAN(G,DY , X, Y)
+ LGAN(F,DX , Y, X)
+ lLcyc(G, F).

(7)

2.6. IsMap classifier

Again, GANs’ success in map style transfer relies on the adversarial loss forcing the gen-
erated maps to be indistinguishable from the input target-styled maps. In addition to the
loss curve reported in the model training process, we employ a deep CNN-based binary
classifier called IsMap to judge whether the transfer styled maps are perceived as maps
(Evans et al., 2017). CNNs can produce significant improvements in image classification
tasks compared with other machine learning models (Huang, Liu, Van Der Maaten, &
Weinberger, 2017; Maggiori, Tarabalka, Charpiat, & Alliez, 2017). However, the deeper
the neural network, the greater the computational costs. Based on existing literature
review and comparison on ImageNet, we chose the GoogleNet/Inception-v3 deep
neural network model. More details about the GoogleNet/Inception architecture is avail-
able in Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna (2016).

We created two categories for preparing the training dataset for the IsMap classifier:
maps and photos. We randomly selected those styled map tiles collected in Section 2.1
as positive samples. We did not include the map tiles used for training the classifier in
the style transferring process. In addition, we randomly collected Flickr photos from its
search API8 without map content as negative samples. We resized all maps and photos
into consistent 256× 256 pixel images (Figure 3).
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2.7. Evaluation

After training the aforementioned two C-GAN models, we evaluated the performance of
each model based on the IsMap classifier. The IsMap classifier returns four results: true
positive (TP), true negative (TN), false positive (FP), and false negative (FN). TP indicates
the number of transfer styled maps correctly classified as a map and TN indicates the
number of tested photos correctly classified as a photo. FP indicates the number of
testing photos incorrectly predicted as maps and FN indicates the number of transfer
styled maps incorrectly predicted as photos. We then calculated the following four
metrics based on the IsMap output:

1 Precision: The portion of the transfer styled images correctly labeled as maps in all
output maps, using the following equation:

Precision = TP
TP+ FP

. (8)

Figure 3. Categories of dataset for training and testing. The first row shows examples of photos col-
lected from Flickr, the second row shows examples of tiled images from both Google Maps and Open-
StreetMap, and the last row shows examples of Monet paintings.
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2 Recall: The portion of true positives captured in classification compared to all actual
maps in the labeling process, using the following equation:

Recall = TP
TP+ FN

. (9)

3 Accuracy: The portion of images labeled correctly either as maps or as photos, using the
following equation:

Accuracy = TP+ TN
TP+ TN+ FP+ FN

. (10)

4 F1 score: Combines both precision and recall values to measure the overall accuracy,
using the following equation:

F1 = 2 ∗ Precision ∗ Recall
Precision+ Recall

. (11)

3. Experiment and results

3.1. Input datasets

We conducted experiments using the OSM raw vector data as well as Google Maps with
two C-GAN models for two U.S. metropolitan areas to test the feasibility and accuracy
of our framework. We utilized the same training and testing datasets for both the
Pix2Pix and CycleGAN models to compare their performance. Because OSM vector data
coverage varies considerably across regions, we focused on two major cities with high
quality data: Los Angeles and San Francisco. We downloaded the OSM vector data for
these cities from Geofabrik9 and served the simple styled maps as map tiles using TileCache
and GeoServer. To simplify the experiment further, we generated map tiles at only two
zoom levels 15 and 18, matching the spatial resolution with the target styled maps from
Google Maps. In total, we generated 870 simple styled maps tiles at zoom level 15, and
9,156 image tiles at zoom level 18 for use as the C-GAN training sets. We paired the
simple-style maps with the equivalent Google Maps tiles for the Pix2Pix model.

After finishing the training process using the two C-GAN models, we randomly selected
217 and 257 simple styled maps tiles, from zoom levels 15 and 18, respectively, to receive
the transferred style as testing cases. These selected simple styled maps tiles were not
included in the C-GAN training process, and thus did not influence style learning and
only used for validation. To train the GoogleNet-based CNN classifier IsMap, we down-
loaded 5500 photos without map content from Flickr, and 500 tiled maps from both
Google Maps and OSM styled maps at different zoom levels. We then trained the IsMap
classifier using this sample to produce the binary label of True or False.

3.2. Pix2Pix: style transferring with paired data

Figure 4 illustrates the training process for the Pix2Pix model. First, we created the simple
styled maps tiles from the OSM vector data, and then fed these tiles into the generator G by
encoding and embedding those images as vectors to generate the ‘fake’ transfer styled
maps. Then, we feed the generated target styled maps and the transfer styled maps into
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the discriminator D, which iterated through 200 epochs until the discriminator no longer
delineate the real versus fake maps. Figures 5 and 6 provide examples of Pix2Pix transfer
styled maps tiles at 50, 100, 150, and 200 epochs for zoom level 18 and 15, respectively.

3.2.1. Generative process with map tiles at a large scale
Figure 7 depicts Pix2Pix transfer styled maps generated at zoom level 18. Intuitively, the
transfer styled maps look similar to the Google Maps tiles, which proves the basic feasibility
of our AI framework broadly and the utility of Pix2Pix C-GAN model specifically. Compared
with the original simple styled maps, Pix2Pix preserves the detailed geometry of the roads
and buildings with minimal observed generalization, but fails to maintain legible labels
and colored markers (see discussion below). Notably, Pix2Pix consistently applies the
target white road styling with a consistently line thickness to input line features and
also applies the target grey building styling with rigid corners to input rectangular fea-
tures, showing a relationship between salient visual variables and feature types in the
transfer style generative process.

3.2.2. Generative process with tiles at a small scale
Figure 8 shows Pix2Pix transfer styled maps at zoom level 15. Compared with the original
simple styled maps, Pix2Pix overgeneralizes the geometry of road features at zoom level 15,
with many intermediate-size streets removed from the target styled maps. This overgener-
alization potentially is explained by differences in the vector data schemas between OSM
and Google Maps, resulting in a thinner road network in the OSM-based transfer styled
maps. In comparison, Pix2Pix appropriately thinned the building features in the transfer
styled maps, eliminating most buildings at zoom level 15 compared to zoom level 18
based on differences in the target styled maps. Thus, Pix2Pix is reasonably successful at
multiscale generalization and style transfer, with the Pix2Pix model preserving feature
types from the simple styled maps that are most salient in the target styled maps when
changing zoom levels.

3.2.3. Limitations of the Pix2Pix
Although the generated transfer styled maps are similar to the target styled maps at both
zoom levels, several limitations in the output exist. First, the map labels are important parts

Figure 4. Data flow of Pix2Pix in this research.

10 Y. KANG ET AL.



Figure 5. Training process using Pix2Pix at zoom level 18. Examples of simple styled maps and target
styled maps in epoch 50, 100, 150 and 200 are shown individually.
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Figure 6. Training process using Pix2Pix at zoom level 15. Examples of simple styled maps and target
styled maps in epoch 50, 100, 150 and 200 are shown individually.
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of the target styled maps, but are not preserved in the transfer styled maps, a major short-
coming of the image-based Pix2Pix model. Thus, while labeling and annotation falls
outside of style learning, Pix2Pix does still learn knowledge of where to put the labels
on the map for subsequent manual label placement. Second, Pix2Pix does not preserve
less frequently observed colors in the target styled maps, such as the colored markers in
Figure 7, instead basing the style transfer on the most common colors in the target
style. Accordingly, the transfer styled maps does not capture grassland, lakes, etc., com-
pared to the road and building colors dominating the urban landscapes of Los Angeles
and San Francisco. However, color sensitivity may improve when expanding the geo-
graphic extent, and thus feature diversity, of the tilesets.

3.3. CycleGAN style rendering with unpaired data

Figure 9 illustrates the training process for the CycleGANmodel. Similar to the Pix2Pix train-
ing, we created the simple styled map tiles using the OSM vector data. These simple styled
maps are encoded and used as input to generator G to produce transfer styled maps and
also represent knowledge that can be restored for discriminator D. Again, CycleGAN does
not used paired data, with the target styled maps generated using randomly selected
images from Google Maps. Similar to the Pix2Pix model training, we also trained the Cycle-
GAN model across 200 epochs, enabling comparison performance between the two

Figure 7. Results of the map style transfer using Pix2Pix at zoom level 18. Examples of simple styled
maps are shown in the first column, transfer styled maps based on Pix2Pix are shown in the second
column, and the target styled maps from Google Maps are shown in the last column.
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models. Figures 10 and 11 provide examples of CycleGAN transfer styled maps tiles at 50,
100, 150, and 200 epochs for zoom level 18 and 15, respectively.

3.3.1. Generative process with tiles at a large scale
Figure 12 shows CycleGAN transfer styled maps generated at zoom level 18. CycleGAN pre-
serves the shapes of roads and building well. Notably, CycleGAN includes marker overlays
from the target styled maps in some of the transfer styled maps, a benefit over Pix2Pix,

Figure 8. Results of the map style transfer using Pix2Pix at zoom level 15. Examples of simple styled
maps are shown in the first column, transfer styled maps based on Pix2Pix are shown in the second
column, and the target styled maps from Google Maps are shown in the last column.

Figure 9. Data flow of CycleGAN in this research.
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Figure 10. Training process using CycleGAN at zoom level 18. Examples of simple styled maps and target
styled maps in epoch 50, 100, 150 and 200 are shown individually.
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Figure 11. Training process using CycleGAN at zoom level 15. Examples of simple styled maps and target
styled maps in epoch 50, 100, 150 and 200 are shown individually.
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although the colors and locations are incorrect. Like Pix2Pix, CycleGAN failed to apply
legible text from the target styled maps. Finally, a broader range of colors are included
in the CycleGAN transfer styled maps compared to the Pix2Pix output, although the
coloring is not applied to the correct locations (e.g. the highlighted Melrose Market in
Figure 12).

3.3.2. Generative process with tiles at a small scale
Figure 13 depicts CycleGAN transfer styled maps generated at zoom level 15. Results show
that the skeletons of the roads remained. Similar to the results in Pix2Pix at zoom level 15,
buildings are generalized at this level. Markers again are generated, with the marker shape
relatively well preserved. Many different features types are distinguishable in the output
results, including primary and secondary roads, building footprints, and less common fea-
tures such as grasslands. Most generated maps look in realistic.

3.3.3. Limitations of the CycleGAN
Although CycleGAN can generate maps with a similar style to the target styled maps, chal-
lenges remained. Similar to the results from Pix2Pix, the generated labels are illegible and
do not contain valuable information. Although CycleGAN does generate marker overlays in

Figure 12. Results of the map style transfer using CycleGAN at zoom level 18. Examples of simple styled
maps are shown in the first column, transfer styled maps based on CycleGAN are shown in the second
column, and the target styled maps from Google Maps are shown in the last column.
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the appropriate shape, the color and location of the markers are incorrect. Compared to
Pix2Pix, CycleGAN inconsistently applies line widths (sizes) to features like roads and the
directions (orientations) of roads change considerably from the simple styled maps, a
major hindrance to the usability of the resulting maps.

3.4. Evaluation and comparison

Qualitatively, the transfer styled maps by CycleGAN are visually similar to those generated
by Pix2Pix, with several notable differences by visual variable, feature type, and zoom level.
Table 1 presents comparative quantitative results using measures derived from the IsMap
classifier, including the aforementioned precision, recall, accuracy, and F1-score. For

Figure 13. Results of the map style transfer using CycleGAN at zoom level 15. Examples of simple styled
maps are shown in the first column, transfer styled maps based on CycleGAN are shown in the second
column, and the target styled maps from Google Maps are shown in the last column.

Table 1. Evaluation metrics of two GAN models at different map zoom levels.

Model Pix2Pix CycleGAN

Data Level 15 Level 18 Level 15 Level 18

Precision 1.000 0.989 1.000 0.992
Recall 0.995 0.732 1.000 0.911
Accuracy 0.998 0.862 1.000 0.951
F1-Score 0.998 0.841 1.000 0.950
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reference, Figure 14 provides two outcomes of the IsMap classifier from the experiment: a
transfer styled maps tile classified as a map and one rejected as a map. As shown in Table 1,
the CycleGAN performs better than the Pix2Pix in transferring the map styles from target
styled maps to simple styled maps. The higher the evaluation metrics is, the better the
model is for map style transfer. The F1-scores of CycleGAN in both zoom levels 15 and
18 are higher than that of Pix2Pix. The transfer styled maps generated at zoom level 15
are more realistic with the F1-score 0.998 compared with results at zoom level 18 with
F1-score 0.841 using Pix2Pix. The result is similar for CycleGAN, in which the quality of trans-
fer styled maps at zoom level 15 with F1-score 1.0 is better than that at zoom level 18 with
F1-score 0.95. Hence, zoom level 15 is more suitable for generating transfer styled maps in
this study, an important finding pointing to the feasibility of AI broadly and GANs specifi-
cally to assist with multiscale generalization and styling. The results also demonstrate that
the CycleGANmodel is more effective for the map style transfer task at both zoom levels 15
and 18 compared with the Pix2Pix model.

4. Discussion

The results of our experiments with the Google Maps style are encouraging, and generate
several insights into future research at the intersections of AI and cartographic design.
First, we explored if non-map input also might work for map style transfer using GANs.
As an example, we downloaded an artwork library by Claude Monet—an impressionist

Figure 14. Examples of binary classification results of IsMap classifier. The transfer styled maps in above
figure is classified as map correctly while in bottom is wrongly classified as photo.
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painter with an aesthetic style characterized by vivid use of colour and dramatic interplay
of light and shadow—for use as a target painting style. Figure 3 shows several Monet
examples used as the target painting style. While Monet primarily painted landscapes,
there is no georeferenced information in the downloaded Monet artwork library and
thus requires the unpaired CycleGAN model for style transfer. We again employed OSM
for the simple styled maps receiving the target painting style. Figure 15 shows several

Figure 15. Results with transferred Monet painting styles using CycleGAN. The left column is real OSM
maps, and the right column is the maps with Monet painting styles transferred.
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transfer styled maps generated by CycleGAN using the Monet target style. Qualitatively, the
output transfer styled maps appear to resemble paintings more than maps, although some
map-like shapes and structures emerge. To confirm our visual interpretation, we again
imported the Monet inspired transfer styled maps into the IsMap classifier and then used
a modified deep-CNN classifier to categorize the images as photos, maps, or (new to
the modified classifier) paintings. Less than 1% of the transfer styled maps are classified
as maps, with most instead classified as paintings. One possible reason for the poorer

Figure 16. Examples of map generalization. The first row shows enhancement as the road in the black
circle thickened; the second row shows selection as the road in the black circle is not selected in the
transfer styled maps; the last row shows typify as several POIs are represented as one marker.
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results is less intensive training on the limited set of input visual art compared to the volu-
minous map tilesets. Therefore, transferring styles from visual art to maps might not be
effective using the current workflow and requires further research.

Second, we took a deeper look at the way that the GANs generalize linework from the
input simple styled maps in the resulting transfer style maps. Figure 16 shows how the GAN
transfer effectively approximates several generalization operators (including enhance-
ment, selection, and typify) to mimic the target Google Maps style at zoom level 15.
First, enhancement of the road width is applied to create an artificial road hierarchy
present across the target styled maps but not included in the original simple styled maps
(Figure 16, top). Based on our analysis, the distance from buildings to roads is the
primary spatial structure that affects how the GANs apply the enhanced road weight.
Second, many roads are selectively eliminated from the simple styled maps in the resulting
zoom level 15 transfer styled maps (Figure 16, middle). Roads that do not follow the orien-
tation of the general street network are more likely candidates for elimination, such as the
circled road running southeast to northwest. Finally, point markers are typified in the trans-
fer styled maps, with the marker placed in the general location of a number of representa-
tive points of interest (POIs) from the simple styled maps (Figure 16, bottom). It is important
to note that the GAN models are unlikely applying specific rule-based generalization oper-
ators, but rather the resulting transfer styled maps exhibit characteristics of these operators.
Studying the generalization operators approximated by GANs may help optimize manual
generalization and provide new insights for cartographic design broadly.

Finally, most existing research about map styling is based on vector data. Vector data
record spatial coordinates and feature attributes separately, making it convenient and suit-
able for geometry generalization and symbol styling. However, our research is based on
raster data, as GANs more commonly are used to process images. Each approach has
pros and cons. Different map features are stored in different layers of vector data,
meaning the styling of each layer is independent from others. As a result, styling of

Figure 17. Example of a topology error in this study. Compared with the target styled maps, the top-
ology of the road intersection in the transfer styled maps is wrong.
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different layers may not work in concert in some places, making it difficult to achieve an
optimal set of styles that work cohesively across the ‘map of everywhere’. Additionally, rich
vector data require more computing resources to apply the styles, limiting both design
exploration by the cartographer and real-time rendering for the audience. In comparison,
raster data—such as the tilesets used in this research—collapse both the spatial and attri-
bute information into a single pixel value. With advanced image processing methods like
convolutional neural networks and GANs, it is easier to calculate the output styling for
raster tilesets, enabling large volume style transfer without complex style lists. However,
the topology relationship of spatial features may break because such raster-based
methods only use the single pixel value for computation. For example, Figure 17 shows
one common topology error occurring in our research: road intersections. In the trans-
ferred styled maps, the bold roads pass one over another rather than intersect, while in
the target styled maps, roads are connected via the intersection. In the future, we plan
on exploring techniques to minimize topology errors in the transfer styled maps.

5. Conclusion and future work

In this research, we investigate multiscale map style transfer using the state-of-the-art
AI techniques. Specifically, we employed two conditional generative adversarial
network models: the Pix2Pix based on paired data and the CycleGAN based on unpaired
data. The results of two methods show that GANs have the capability to transfer
styles from customized styled maps like Google Maps to another without CartoCSS style
sheets.

To answer the three research questions proposed in Section 1, the study explored
whether the two models can preserve both the complex patterns of spatial features
and the aesthetic styles in generated maps. From the qualitative visual analysis, several
visual variables of the target styled maps are retained, including the feature color, the
line width (size), and feature shape, especially in urban areas with buildings and roads.
The locations of some markers and annotations are also learned learned from the transfer
styled maps. However, the GANs failed to apply legible text labels from the target styled
maps. Moreover, we tested the performance of two models at two different zoom levels
of the map data with different geographic ranges and feature compositions. In order to
check whether the output still appears to be maps, we implemented a deep convolutional
neural network to evaluate the results.

The CycleGAN model performs better than the Pix2Pix model using quantitative
measures in our experiments regardless of the map zoom level. The transfer styled maps
at level 15 perform better than that at level 18 using both Pix2Pix and CycleGAN models.
There is a wide gap in performance at zoom level 18, with CycleGAN producing an F1-score
of 0.95 but Pix2Pix only reaching a score of 0.841. Thus, geographic features at small scales
can be generalized automatically, and important result with positive implications for the
use of AI to assist with multiscale generalization and styling. Taken together, these
findings prove that GANs have a great potential for map style rendering, transferring,
and maybe other tasks in cartography.

Although most generated maps look realistic, several problems and challenges remain.
First, since the GAN models are based on pixels from the input images, the topology of
geographic features may not be well retained as discussed in Section 4. Second,
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because of the existence of point markers and textual labels in the tiled maps, the quality
of transfer styled maps are influenced by them. However, the markers and text labels are
important to the map purpose and might require separate pattern recognition models
(Chiang, 2016) to achieve better results. Therefore, in our future work, we also plan to
train maps without labels and markers to reduce the bias caused by them.

In sum, this research demonstrates substantial potential for implementing artificial
intelligence techniques in cartography. We outline several important directions for the
use of AI in cartography moving forward. First, our use of GANs can be extended to
other mapping contexts to help cartographers deconstruct the most salient stylistic
elements that constitute the unique look and feel of existing designs, using this infor-
mation to improve designs in future iterations. This research also can help non-experts
who lack professional cartographic knowledge and experience to generate reasonable car-
tographic style sheet templates based on inspiration maps or visual art. Finally, integration
of AI with cartographic design may automate part of the generalization process, a particu-
larly promising avenue given the difficult of updating high resolution datasets and render-
ing new tilesets to support the ’map of everywhere’.

Notes

1. https://carto.com/developers/styling/cartocss/
2. https://www.mapbox.com/designer-maps/
3. https://tilemill-project.github.io/tilemill/
4. http://tilecache.org/
5. https://www.google.com/maps
6. https://www.openstreetmap.org
7. http://geoserver.org/
8. https://www.flickr.com/services/api/flickr.photos.search.html
9. https://www.geofabrik.de/data/download.html

Acknowledgments

The authors would like to thank Bo Peng at the University of Wisconsin-Madison, Fan Zhang from the
MIT Senseable city lab, and Di Zhu from the Peking University for their helpful discussions for the
research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research was funded by the Wisconsin Alumni Research Foundation and the Trewartha Gradu-
ate Research fund.

Notes on contributors

Yuhao Kang is a Master/Ph.D student at the Department of Geography, University of Wisconsin-
Madison. He holds a bachelor’s degree in Geographic Information Science at the Wuhan University.

24 Y. KANG ET AL.

http://https://carto.com/developers/styling/cartocss/
http://https://www.mapbox.com/designer-maps/
http://https://tilemill-project.github.io/tilemill/
http://tilecache.org/
http://https://www.google.com/maps
http://https://www.openstreetmap.org
http://geoserver.org/
http://https://www.flickr.com/services/api/flickr.photos.search.html
http://https://www.geofabrik.de/data/download.html


His main research interests include Place-Based GIS, Spatio-temporal Data Mining, GeoAI, Human
Mobility, and Urban Computing.

Dr. Song Gao is an Assistant Professor in GIScience at the Department of Geography, University of
Wisconsin-Madison, where he leads the Geospatial Data Science Lab. He holds a Ph.D. in Geography
at the University of California, Santa Barbara. His main research interests include Place-Based GIS,
Geospatial Big Data Analytics, GeoAI, Human Mobility, and Urban Computing. He currently serves
as the Associate Editor for Annals of GIS and the Editorial Board Member of PLOS ONE.

Dr. Robert E. Roth is the Faculty Director of the University of Wisconsin Cartography Lab and an
Associate Professor in the University of Wisconsin-Madison Department of Geography. His research
focuses on interactive, online, and mobile map design and visualization. He currently serves as the
Vice Chair of the ICA Commission on Use, Users, and Usability and the Section Editor for Cartography
and Visualization in the Geographic Information Science and Technology Body of Knowledge.

ORCID

Yuhao Kang http://orcid.org/0000-0003-3810-9450
Song Gao http://orcid.org/0000-0003-4359-6302
Robert E. Roth http://orcid.org/0000-0003-1241-318X

References

Armstrong, M. P., & Xiao, N. (2018). Retrospective deconstruction of statistical maps: A choropleth
case study. Annals of the American Association of Geographers, 108(1), 179–203.

Brewer, C. A., & Buttenfield, B. P. (2007). Framing guidelines for multi-scale map design using data-
bases at multiple resolutions. Cartography and Geographic Information Science, 34(1), 3–15.

Buckley, A., & Jenny, B. (2012). Letter from the guest editors. Cartographic Perspectives.
Chiang, Y.-Y. (2016). Unlocking textual content from historical maps-potentials and applications,

trends, and outlooks. In International conference on recent trends in image processing and
pattern recognition (pp. 111–124). Bidar, IN: Springer.

Christophe, S., & Hoarau, C. (2012). Expressive map design based on pop art: Revisit of semiology of
graphics? Cartographic Perspectives, 73, 61–74.

Christophe, S., Duménieu, B., Turbet, J., Hoarau, C., Mellado, N., Ory, J., & Brédif, M. (2016). Map style
formalization: Rendering techniques extension for cartography. Proceedings of the joint symposium
on computational aesthetics and sketch based interfaces and modeling and non-photorealistic ani-
mation and rendering (pp. 59–68). Eurographics Association.

DeLucia, A., & Black, T. (1987). A comprehensive approach to automatic feature generalization.
Proceedings of the 13th international cartographic conference, Morelia, Mexico (pp. 168–191).

Deng, X., Zhu, Y., & Newsam, S. (2018). What is it like down there? generating dense ground-level
views and image features from overhead imagery using conditional generative adversarial net-
works. preprint arXiv:1806.05129.

Duan, W., Chiang, Y.-Y., Knoblock, C. A., Jain, V., Feldman, D., Uhl, J. H., & Leyk, S. (2017). Automatic
alignment of geographic features in contemporary vector data and historical maps. Proceedings
of the 1st workshop on artificial intelligence and deep learning for geographic knowledge discovery
(pp. 45–54). Los Angeles, CA: ACM.

Evans, M. R., Mahmoody, A., Yankov, D., Teodorescu, F., Wu, W., & Berkhin, P. (2017). Livemaps: Learning
geo-intent from images of maps on a large scale. Proceedings of the 25th ACM SIGSPATIAL inter-
national conference on advances in geographic information systems (p. 31). Los Angeles, CA: ACM.

Foerster, T., Stoter, J., & Köbben, B. (2007). Towards a formal classification of generalization operators.
Proceedings of the 23rd international cartographic conference, Moscow, Russia (pp. 4–10).

Ganguli, S., Garzon, P., & Glaser, N. (2019). GeoGAN: A conditional GAN with reconstruction and style loss
to generate standard layer of maps from satellite images. Retrieved from https://arxiv.org/pdf/1902.
05611.pdf

INTERNATIONAL JOURNAL OF CARTOGRAPHY 25

http://orcid.org/0000-0003-3810-9450
http://orcid.org/0000-0003-4359-6302
http://orcid.org/0000-0003-1241-318X
https://arxiv.org/pdf/1902.05611.pdf
https://arxiv.org/pdf/1902.05611.pdf


Gao, S., Janowicz, K., & Zhang, D. (2017). Designing a map legend ontology for searching map
content. Advances in Ontology Design and Patterns, 32, 119–130.

Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks.
Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA
(pp. 2414–2423).

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning. Cambridge: MIT Press.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., …, & Bengio, Y. (2014).

Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–2680).
Hu, Y., Gao, S., Newsam, S., & Lunga, D. (2018). GeoAI 2018 workshop report the 2nd ACM SIGSPATIAL

international workshop on GeoAI. SIGSPATIAL Special, 10(3), 16–16.
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional

networks. Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu,
HI, USA (pp. 4700–4708).

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adver-
sarial networks. Proceedings of the IEEE conference on computer vision and pattern recognition,
Honolulu, HI, USA (pp. 1125–1134).

Kent, A. J., & Vujakovic, P. (2009). Stylistic diversity in european state 1: 50 000 topographic maps. The
Cartographic Journal, 46(3), 179–213.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger, (Eds.), Advances in
neural information processing systems 25 (pp. 1097–1105). Lake Tahoe, Nevada: Curran
Associates, Inc.

Law, S., Seresinhe, C. I., Shen, Y., & Gutierrez-Roig, M. (2018). Street-frontage-net: Urban image classifi-
cation using deep convolutional neural networks. International Journal of Geographical
Information Science, 1–27. doi:10.1080/13658816.2018.1555832

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.
Li, W., & Hsu, C.-Y. (2018). Automated terrain feature identification from remote sensing imagery: A

deep learning approach. International Journal of Geographical Information Science, 1–24.
Mackaness, W. A., Ruas, A., & Sarjakoski, L. T. (2011). Generalisation of geographic information:

Cartographic modelling and applications. Amsterdam: Elsevier.
Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2017). Convolutional neural networks for large-

scale remote-sensing image classification. IEEE Transactions on Geoscience and Remote Sensing,
55(2), 645–657.

Mao, H., Hu, Y., Kar, B., Gao, S., & McKenzie, G. (2017). GeoAI 2017 workshop report: The 1st ACM
SIGSPATIAL international workshop on geoAI:@ AI and deep learning for geographic knowledge
discovery. SIGSPATIAL Special, 9(3), 25–25.

McMaster, R. B., & Shea, K. S. (1992). Generalization in digital cartography. Washington, DC: Association
of American Geographers Washington.

Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. preprint arXiv:1411.1784.
Muehlenhaus, I. (2012). If looks could kill: The impact of different rhetorical styles on persuasive geo-

communication. The Cartographic Journal, 49(4), 361–375.
Peterson, M. P. (2011). Travels with ipad maps. Cartographic Perspectives, 68, 75–82.
Raposo, P. (2017). Scale and generalization. The geographic information science & technology body of

knowledge (4th quarter 2017 edition), John P. Wilson.
Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. (2016). Generative adversarial text to

image synthesis. preprint arXiv:1605.05396.
Regnauld, N., & McMaster, R. B. (2007). A synoptic view of generalisation operators. In W. Mackaness,

A. Ruas, & L. T. Sarjakoski (Eds.), Generalisation of geographic information (pp. 37–66). Amsterdam:
Elsevier Ltd.

Roth, R. E., Brewer, C. A., & Stryker, M. S. (2011). A typology of operators for maintaining legible map
designs at multiple scales. Cartographic Perspectives, 68, 29–64.

Roth, R. E., Donohue, R. G., Sack, C. M., Wallace, T. R., & Buckingham, T. M. A. (2015). A process for
keeping pace with evolving web mapping technologies. Cartographic Perspectives, 78, 25–52.

26 Y. KANG ET AL.

https://doi.org/10.1080/13658816.2018.1555832


Shen, Y., Ai, T., Wang, L., & Zhou, J. (2018). A new approach to simplifying polygonal and linear
features using superpixel segmentation. International Journal of Geographical Information
Science, 32(10), 2023–2054.

Peterson, M. P. (2014). Mapping in the cloud. New York, NY: The Guilford Press.
Srivastava, S., Vargas-Muñoz, J. E., Swinkels, D., & Tuia, D. (2018). Multilabel building functions classifi-

cation from ground pictures using convolutional neural networks. Proceedings of the 2nd ACM
SIGSPATIAL international workshop on AI for geographic knowledge discovery (pp. 43–46). ACM.

Stanislawski, L. V., Buttenfield, B. P., Bereuter, P., Savino, S., & Brewer, C. A. (2014). Generalisation oper-
ators. In Dirk Burghardt, Cécile Duchêne, & William Mackaness (Eds.), Abstracting geographic infor-
mation in a data rich world (pp. 157–195). Cham: Springer.

Stoter, J. (2005). Generalisation within nma’s in the 21st century. Proceedings of the international carto-
graphic conference, A Coruña, Spain.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architec-
ture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recog-
nition, Las Vegas, NV (pp. 2818–2826).

VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y. (2018). Emerging trends in geospatial artificial intelli-
gence (geoAI): Potential applications for environmental epidemiology. Environmental Health, 17
(1), 40.

Xu, C., & Zhao, B. (2018). Satellite image spoofing: Creating remote sensing dataset with generative
adversarial networks. 10th International conference on geographic information science (GIScience
2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Melbourne, Australia.

Zhang, F., Wu, L., Zhu, D., & Liu, Y. (2019). Social sensing from street-level imagery: A case study in
learning spatio-temporal urban mobility patterns. ISPRS Journal of Photogrammetry and Remote
Sensing, 153, 48–58.

Zhang, F., Zhou, B., Liu, L., Liu, Y., Fung, H. H., Lin, H., & Ratti, C. (2018). Measuring human perceptions
of a large-scale urban region using machine learning. Landscape and Urban Planning, 180, 148–
160.

Zhou, X., Li, W., Arundel, S. T., & Liu, J. (2018). Deep convolutional neural networks for map-type
classification. preprint arXiv:1805.10402.

Zhu, D., Cheng, X., Zhang, F., Yao, X., Gao, Y., & Liu, Y. (2019). Spatial interpolation using conditional
generative adversarial neural networks. International Journal of Geographical Information Science,
1–24.

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-con-
sistent adversarial networks. Proceedings of the IEEE international conference on computer vision,
Honolulu, HI (pp. 2223–2232).

Zou, Q., Ni, L., Zhang, T., & Wang, Q. (2015). Deep learning based feature selection for remote sensing
scene classification. IEEE Geoscience and Remote Sensing Letters, 12(11), 2321–2325.

INTERNATIONAL JOURNAL OF CARTOGRAPHY 27


	Abstract
	1. Introduction
	2. Methods
	2.1. Overview
	2.2. Data preparation and preprocessing
	2.3. GANs
	2.4. Pix2Pix
	2.5. CycleGAN
	2.6. IsMap classifier
	2.7. Evaluation

	3. Experiment and results
	3.1. Input datasets
	3.2. Pix2Pix: style transferring with paired data
	3.2.1. Generative process with map tiles at a large scale
	3.2.2. Generative process with tiles at a small scale
	3.2.3. Limitations of the Pix2Pix

	3.3. CycleGAN style rendering with unpaired data
	3.3.1. Generative process with tiles at a large scale
	3.3.2. Generative process with tiles at a small scale
	3.3.3. Limitations of the CycleGAN

	3.4. Evaluation and comparison

	4. Discussion
	5. Conclusion and future work
	Notes
	Acknowledgments
	Disclosure statement
	Notes on contributors
	ORCID
	References

